Abstract:
To provide: a production method using a catalyst which can substantially suppress leaching of active metal components and exhibit high activity for both reactions of transesterification of glycerides and esterification of free fatty acids each contained in a fat or oil; and the catalyst. A method for producing fatty acid alkyl esters and/or glycerin comprising a step of bringing a fat or oil into contact with an alcohol in the presence of a catalyst, wherein the catalyst is at least one catalyst selected from the group consisting of the following (I) to (V): (I) a metal oxide having an ilmenite structure and/or a slyrankite structure; (II) an oxide containing a metallic element belonging to the Group 12 and a metallic element belonging to the Group 4; (III) a mixed oxide containing a metallic element belonging to the Group 12 and a tetravalent transition metallic element; (IV) a metal oxide containing zirconium and at least one metallic element selected from the group consisting of metallic elements belonging to the Groups 4, 5 and 8; and (V) a metal oxide containing anatase type titanium oxide and/or rutile type titanium oxide, and the metal oxide containing a sulfur component of 700 ppm or less.
Abstract:
The invention relates to a catalyst body comprising a Fischer-Tropsch catalyst or catalyst precursor and a porous body, said porous body being between 1-50 mm, preferably 1-30 mm in size, the catalyst body having an internal voidage between 50-95%. The invention further relates to a process comprising the steps of: (i) introducing the synthesis gas into the reactor; and (ii) contacting the synthesis gas with a non-stationary catalyst to catalytically convert the synthesis gas at an elevated temperature to obtain the normally gaseous, normally liquid, and optionally normally solid hydrocarbons from synthesis gas; wherein the catalyst of step (ii) is located on a plurality of porous bodies being 1-50 mm in size, preferably 1-30 mm in size, thus forming catalyst bodies, and wherein said catalyst bodies have an external voidage in situ in the reactor between 5-60%, and a porosity within the catalyst bodies between 50-95%. Use of catalyst bodies according to the invention provides an advantageous intermediate balance whereby such catalyst bodies are significantly easier (and therefore less costly) to separate from the products of the slurry reactor, but they are still able to be supported by the slurry, and are therefore still movable within the reactor vessel so as to seek the most even catalytic transfer and heat transfer, but without being fixed.
Abstract:
[Problems to be Solved] The invention provides inexpensive carbon fiber filler material, which has a low content of metal impurity and enables the resin composite material to exhibit conductivity when added thereto in a small amount.[Means to Solve the Problem] (1) carbon nanofiber containing iron (Fe) of 6 mass % or less and vanadium (V) of 3 mass % or less as a metal impurity other than carbon, which does not substantially contain metal elements other than Fe and V, (2) a method for producing carbon nanofiber characterized in contacting a catalyst in which Fe and V are supported on a carbon support and a carbon-containing compound at a high temperature, (3) a resin composite material in which the carbon nanofiber is blended and (4) use thereof.
Abstract:
Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
Abstract:
A process for the manufacture of an improved vanadium antimony oxide oxidation or ammoxidation catalyst which comprises heat treating the catalyst at a temperature above 780null C. in the presence of an oxygen enriched environment. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding null-null-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
Abstract:
Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
Abstract:
Raney copper which is doped with at least one metal from the group comprising iron and/or noble metals is used as a catalyst in the dehydrogenation of alcohols.
Abstract:
A process of manufacturing acrylonitrile or methacrylonitrile by the catalytic reaction in the vapor phase of a paraffin selected from propane and isobutane with molecular oxygen and ammonia by catalytic contact of the reactants in a reaction zone with a catalyst, the feed composition having a mole ratio of the paraffin to ammonia in the range of from about 2.5 to 16 and a mole ratio of paraffin to oxygen in the range of from about 1.0 to 10, wherein said catalyst has the elements in the proportions indicated by the empirical formula:VSb.sub.m A.sub.a D.sub.b Q.sub.q R.sub.r O.sub.xwhereA is one or more of Ti, Sn, Fe, Cr and Ga;D is one or more of Li, Mg, Ca, Sr, Ba, Co, Ni, Zn, Ge, Zr, Cu, Ta, Bi, Ce, In, B and Mn;Q is one or more of Mo, W, and Nb;R is one or more of As, Te, and Se;m equals 0.8 to 4;a equals 0.01 to 2;d is 0 to 2;0.ltoreq.q
Abstract:
A catalyst for producing phenols consists essentially of;an iron oxide;a nickel oxide;at least one first oxide selected from the group consisting of a vanadium oxide and a molybdenum oxide; andat least one second oxide selected from the group consisting of an alkali metal oxide and an alkaline earth metal oxide.The catalyst is used to produce phenols from benzoic acid or an alkyl benzoic acid.
Abstract:
An exhaust gas containing nitrogen oxides and particulate matter is cleaned by using an exhaust gas cleaner including a heat-resistant, porous filter; a porous ceramic powder layer formed on the filter; and a catalyst supported by the ceramic powder layer, the catalyst consisting essentially of (a) at least one of alkali metal elements, (b) cobalt and/or manganese, (c) vanadium, and (d) at least one of rare earth elements, whereby the nitrogen oxides are reduced by the particulate matter in the exhaust gas serving as a reducing agent.