Abstract:
A real-time integrated navigation system for a vehicle includes a GPS receiver, connected to a first antenna, where the GPS receiver receives GPS data from satellites and outputs GPS position data. The system also includes a communications link, connected to a second antenna and to the GPS receiver, receiving range and carrier phase measurements from at least one base station. The system further includes navigation aids which provide relative position data of said vehicle and a Kalman filter, connected to the output of the GPS receiver and the navigation aids, that integrates the GPS position data and the relative position data and outputs smoothed position data. The smoothed position data is used in transportation applications, especially detection of lane departure. This GPS-based positioning system is suitable for highway speeds during all weather conditions.
Abstract:
A driving assist system for assisting effort by an operator to operate a vehicle in traveling is provided. The driving assist system receives data including information on vehicle state and information on environment in a field around the vehicle. A controller, mounted to the vehicle, determines future environment in the field, makes an operator response plan in response to the determined future environment to determine command, and generates the command. The operator response plan prompts the operator to operating the vehicle in a desired manner for the determined future environment. At least one actuator, mounted to the vehicle, prompts the operator in response to the command to operating the vehicle in the desired manner.
Abstract:
A real-time integrated navigation system for a vehicle includes a GPS receiver, connected to a first antenna, where the GPS receiver receives GPS data from satellites and outputs GPS position data. The system also includes a communications link, connected to a second antenna and to the GPS receiver, receiving range and carrier phase measurements from at least one base station. The system further includes navigation aids which provide relative position data of said vehicle and a Kalman filter, connected to the output of the GPS receiver and the navigation aids, that integrates the GPS position data and the relative position data and outputs smoothed position data. The smoothed position data is used in transportation applications, especially detection of lane departure. This GPS-based positioning system is suitable for highway speeds during all weather conditions.
Abstract:
A camera unit 10 is mounted on a vehicle 3. When an attempt is made to park the vehicle 3 in a parking lot, a predicted path 5a and guidelines 5b are displayed on an information display 4 together with an image. Data to be used for displaying the predicted path 5a and the guidelines 5b are stored beforehand in internal memory of an image processing circuit 19 provided in a parking assist ECU 6 so that the data can be selected in accordance with specifications, such as the type of the vehicle 3. The predicted path 5a is computed on the basis of a steering angle detected by a steering angle sensor provided in an exposed portion of the steering shaft 11. The length or color of the predicted path 5a is changed in accordance with the speed of the vehicle 3. Further, a vehicle driving support system is provided with a back sonar 17, and hence the length or color of the predicted path 5a is also changed in accordance with the result of detection of an obstacle.
Abstract:
A camera unit 10 is mounted on a vehicle 3. When an attempt is made to park the vehicle 3 in a parking lot, a predicted path 5a and guidelines 5b are displayed on an information display 4 together with an image. Data to be used for displaying the predicted path 5a and the guidelines 5b are stored beforehand in internal memory of an image processing circuit 19 provided in a parking assist ECU 6 so that the data can be selected in accordance with specifications, such as the type of the vehicle 3. The predicted path 5a is computed on the basis of a steering angle detected by a steering angle sensor provided in an exposed portion of the steering shaft 11. The length or color of the predicted path 5a is changed in accordance with the speed of the vehicle 3. Further, a vehicle driving support system is provided with a back sonar 17, and hence the length or color of the predicted path 5a is also changed in accordance with the result of detection of an obstacle.
Abstract:
In road white line detecting apparatus and method, a CCD camera is installed to photograph a road surface, an edge image is generated from a road surface image photographed and outputted by the CCD camera, edge positions of a smear are detected from a region of the generated edge image which is determined on the basis of a previously detected position of a white line on the road surface, smear edges corresponding to the edge positions of the smear are generated from the generated edge image, and the present position of the white line are detected from the generated edge image from which the smear edges have been eliminated.
Abstract:
In a method for detecting lane deviation of a vehicle, a difference between a center point of lane markers and a center point of the vehicle is first determined. Then a difference between a screen center x-coordinate and a vehicle center point x-coordinate is subtracted from the determined difference between the center point of lane markers and the center point of the vehicle. And it is determined that the vehicle is deviating from the lane if the result of the subtraction is less than a predetermined value.
Abstract:
An optical radar system for vehicles has a stationary receiver and a transmitter which scans the road surface ahead of the vehicle, the scan area being shifted in accordance with the direction of steering of the vehicle. The scan area is covered by periodically sweeping a narrow-beam pulse laser through the designated scan area and monitoring the return lag of pulses reflected by objects in the scan area. The scan area is centered over the longitudinal axis of the vehicle while the latter is moving straight ahead. The axis of the scan area is shifted in proportion to the orientation of the steering wheel of the vehicle.
Abstract:
A lane-control system suitable for use on an automated vehicle comprising a camera, a lidar-sensor, and a controller. The camera captures an image of a roadway traveled by a host-vehicle. The lidar-sensor detects a discontinuity in the roadway. The controller is in communication with the camera and the lidar-sensor and defines an area-of-interest within the image, constructs a road-model of the roadway based on the area-of-interest, determines that the host-vehicle is approaching the discontinuity, and adjusts the area-of-interest within the image based on the discontinuity.
Abstract:
A lane-control system suitable for use on an automated vehicle comprising a camera, a lidar-sensor, and a controller. The camera captures an image of a roadway traveled by a host-vehicle. The lidar-sensor detects a discontinuity in the roadway. The controller is in communication with the camera and the lidar-sensor and defines an area-of-interest within the image, constructs a road-model of the roadway based on the area-of interest, determines that the host-vehicle is approaching the discontinuity, and adjusts the area-of-interest within the image based on the discontinuity.