Abstract:
A microelectromechanical system includes a membrane of amorphous carbon having a thickness between 1 nm and 50 nm, and for example between 3 nm and 20 nm.
Abstract:
A microelectromechanical system includes a membrane of amorphous carbon having a thickness between 1 nm and 50 nm, and for example between 3 nm and 20 nm.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.
Abstract:
Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
Abstract:
A method for manufacturing package structure is provided, including: providing a substrate having recesses; forming first MEMS chips on the substrate, each with a through-substrate via, and a first sensor or microactuator on the lower surface, located in one of the recesses; forming first intermediate chips on the substrate, each respectively on one of the first MEMS chips, having a through-substrate via, and including a signal conversion unit, a logic operation unit, control unit, or a combination thereof; forming second MEMS chips on the first intermediate chips, each with a through-substrate via, having a second sensor or microactuator on its upper surface, wherein the package structure includes at least one of the first sensor and the second sensor; and forming first capping plates on the second MEMS chips, each providing a receiving space for the second sensor or microactuator on the upper surface of each second MEMS chip.
Abstract:
A ferroelectric material includes a mixed crystal having AlN and at least one nitride of a transition metal. The proportion of the nitride of the transition metal is selected such that a direction of an initial or spontaneous polarity of the ferroelectric material is switchable by applying a switchover voltage. The switchover voltage is below a breakdown voltage of the ferroelectric material.
Abstract:
A suspended device structure comprises a substrate, a cavity disposed in a surface of the substrate, and a device suspended entirely over a bottom of the cavity. The device is a piezoelectric device and is suspended at least by a tether that physically connects the device to the substrate. The tether has a non-linear centerline. A wafer can comprise a plurality of suspended device structures. A device structure can comprise a device over a sacrificial portion or cavity and a tether with a tether opening extending to the sacrificial portion or cavity. The tether or tether opening can have a T shape. The tether can have a tether length at least one third as large as a device length and the device can have a device length at least twice as large as a device width.
Abstract:
A camera system incorporating a MEMS actuator to achieve focus adjustments to compensate for the thermal expansion of the lens assembly is disclosed. The camera comprises a lens barrel, lens holder, infra-red (IR) filter, board circuit, MEMS actuator, housing package for the actuator, and an image sensor. The image sensor is directly wire bonded to pads on the circuit board such that these pads are movable at the image sensor end and fixed at the circuit board end. When the camera is exposed to temperature variations, the MEMS actuator moves the sensor along the optical axis to maintain the image in focus.
Abstract:
A construction component for detecting the application of energy and responding to the energy input wherein a plurality of particles are distributed throughout the component with each particle being configured to sense component state information. The component includes at least one processor configured to receive sensing information from the plurality of particle sensors. The processor configured to receive component state information and to process the information to determine a response to selectively alter attributes of the construction component to affect the behavior of the component. The plurality of particles capable of converting a portion of the energy applied to the construction component into an alternative form of energy, wherein the converted energy is harvested for utilization elsewhere.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.