Abstract:
[Problem] To provide a perhydropolysilazane making it possible to form a siliceous film with minimal defects, and a curing composition comprising the perhydropolysilazane.[Means for Solution] The present invention provides a perhydropolysilazane having a weight-average molecular weight of 5,000 to 17,000, characterized in that when 1H-NMR of a 17% by weight solution of said perhydropolysilazane dissolved in xylol is measured, the ratio of the amount of SiH1,2 based on the aromatic ring hydrogen content of the xylol is 0.235 or less and the ratio of the amount of NH based on the aromatic ring hydrogen content of the xylol is 0.055 or less, and a curing composition comprising the perhydropolysilazane. The present invention also provides a method for forming a siliceous film, comprising coating the curing composition on a substrate and heating.
Abstract:
The present invention is directed to a condensed phase batch process for synthesis of trisilylamine (TSA). An improved synthesis process that incorporates a solvent to help promote a condensed-phase reaction between ammonia gas (or liquid) and liquified monochlorosilane (MCS) in good yields is described. This process facilitates the removal of the byproduct waste with little to no reactor down time, substantial reduction of down-stream solids contamination and high-purity product from first-pass distillation.
Abstract:
The method described herein provides a method for preparing trisilylamine. In one aspect, the method comprises: providing a reaction mixture of trisilylamine and monochlorosilane into a reactor wherein the reaction mixture is at a temperature and pressure sufficient to provide trisilylamine in a liquid phase wherein the reaction mixture is substantially free of an added solvent; contacting the reaction mixture with ammonia to provide a crude mixture comprising trisilylamine and an ammonium chloride solid wherein monochlorosilane is in stoichiometric excess in relation to ammonia; purifiying the crude mixture to provide trisilylamine wherein the trisilyamine is produced at purity level of 90% or greater; and optionally removing the ammonium chloride solid from the reactor.
Abstract:
Mono-substituted TSA precursor Si-containing film forming compositions are disclosed. The precursors have the formula: (SiH3)2N—SiH2—X, wherein X is selected from a halogen atom; an isocyanato group; an amino group; an N-containing C4-C10 saturated or unsaturated heterocycle; or an alkoxy group. Methods for forming the Si-containing film using the disclosed mono-substituted TSA precursor are also disclosed.
Abstract:
The present invention is directed to modifications of bitumen and heavy oil upgrading and refining processes to synthesize synthetic crude oil and other valuable synthesized hydrocarbon products in an efficient manner along with the production of commercially valuable co-products from by-products formed by the upgrading process.
Abstract:
A method of purifying ammonia borane is provided whereby crude ammonia borane is dissolved in a basic aqueous solution, the solution is heated to decompose and precipitate impurities found in the crude ammonia borane, and the impurities are separated by filtration. The aqueous solution containing dissolved ammonia borane is then cooled to a temperature of from 10° C. to −10° C., to precipitate the ammonia borane, which is recovered and dried to yield a high-purity product.
Abstract:
The method described herein provides a method for preparing trisilylamine. In one aspect, the method comprises: providing a reaction mixture of trisilylamine and monochlorosilane into a reactor wherein the reaction mixture is at a temperature and pressure sufficient to provide trisilylamine in a liquid phase wherein the reaction mixture is substantially free of an added solvent; contacting the reaction mixture with ammonia to provide a crude mixture comprising trisilylamine and an ammonium chloride solid wherein monochlorosilane is in stoichiometric excess in relation to ammonia; purifiying the crude mixture to provide trisilylamine wherein the trisilyamine is produced at purity level of 90% or greater; and optionally removing the ammonium chloride solid from the reactor.
Abstract:
A method of purifying ammonia borane is provided whereby crude ammonia borane is dissolved in a basic aqueous solution, the solution is heated to decompose and precipitate impurities found in the crude ammonia borane, and the impurities are separated by filtration. The aqueous solution containing dissolved ammonia borane is then cooled to a temperature of from 10° C. to −10° C., to precipitate the ammonia borane, which is recovered and dried to yield a high-purity product.
Abstract:
A filler for filling a gap includes a compound represented by the following Chemical Formula 1. SiaNbOcHd. [Chemical Formula 1] In Chemical Formula 1, a, b, c, and d represent relative amounts of Si, N, 0, and H, respectively, in the compound, 1.96
Abstract:
There is described an apparatus, a tubular laminar flow, plug flow reactor, for making silylamines and particularly trisilylamine (TSA) in high yields from ammonia gas and a monohalosilane gas. The apparatus can be a tubular flow reactor comprising a first portion of the reactor defining a gas entry zone, a second portion of the reactor defining a reaction zone and a third portion of the reactor defining a separation zone, the reaction zone providing a reactant contacting region. Trisilylamine can be recovered in the separation zone in a cold trap collection vessel.