Abstract:
A steel cord for reinforcing a rubber article which can improve the cut resistant property in the case of treading on an obtusely or sharply pointed projection without decreasing the strength in the axial direction of the cord and without increasing the tire weight, as well as a tire utilizing the same as a reinforcing material, are provided.The steel cord for reinforcing a rubber article has a multi-twisted structure formed by twisting a plurality of sheath strands (2) formed by twisting a plurality of wires around a core strand (2) formed by twisting a plurality of wires, and the core strand (1) and the sheath strands (2) are constituted of an at least 2-layer-twisted structure formed by twisting core wires and sheath wires respectively. In this case the relationship represented by the following formula 1.8≦[(S·cos2α)/{r·(φ1+φ2)}]×100≦4.2 is satisfied, wherein φ1: the diameter of an outermost wire of the strand (1), φ2: the diameter of an outermost wire of the strand (2), r: the center distance between the strand (1) and the strand (2), S: the cross section of the strand (2), and α: the twist angle of the strand (2).
Abstract:
Provided are a steel cord for reinforcing rubber whose fatigue resistance is increased more than ever to enable achieving high durability that was not conventionally realized, and a pneumatic radial tire including the steel cord as a reinforcement member.In a steel cord for reinforcing rubber having a double-twist structure that includes a plurality of strands twisted together in the same direction with the same pitch and including a central structure and at least one outer layer, the central structure is composed of at least two strands being twisted around each other and each being composed of at least seven filaments being twisted together. In a steel cord for reinforcing rubber including at least three core strands being twisted together and at least six sheath strands being twisted together around the core strands, the core strands and the sheath strands are twisted in the same direction.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.
Abstract:
One aspect of this invention concerns a multi-strand steel wire rope (28, 32, 36, 46, 50) comprising multiple strands (3, 10, 38) laid up helically on a core (30, 34,), characterised in that at least some of the strands are deep strands (10, 38), i.e. strands with a heightwidth ratio greater than unity. Another aspect of the invention concerns the deep strand (10, 38) itself.
Abstract:
An annular metal cord includes an annular core portion formed in an annular shape, and an outer layer portion spirally wound around the annular core portion while running over an annular circumference thereof plural times and covering an outer peripheral surface of the annular core portion. Each of the annular core portion and the outer layer portion are formed by a strand material which is formed by intertwisting a plurality of metal filaments. The annular core portion and the outer layer portion are formed by a continuous strand material.
Abstract:
A rubber product-reinforcing metallic cord is provided which comprises three to five metallic filaments, which shows a high degree of penetration of rubber without reducing compressive rigidity, and which can be manufactured at low facility and production costs. A rubber product-reinforcing metallic cord 7 is formed by twisting together a pre-strand 6 comprising a first metallic filament 1 and a second metallic filament 2 helically wrapped around the first filament 1, and a fifth metallic filament 3 (or 5) with a twist pitch P. The metallic cord 7 may be formed by twisting together two of such pre-strands, or by twisting together two of such pre-strands and the fifth metallic filament.
Abstract:
The present invention relates to a metal cable usable for reinforcing a carcass reinforcement for a tire, such as a heavy-vehicle tire, to a composite fabric usable as a ply for such a carcass reinforcement, to a carcass reinforcement comprising this fabric and to a tire incorporating this carcass reinforcement.A metal cable according to the invention comprises a textile wrap, and is such that said wrap is formed of an aromatic thermotropic polyester or polyester amide.A composite fabric according to the invention is such that it comprises a rubber composition which is reinforced by said cables.A tire according to the invention has its carcass reinforcement comprising said composite fabric.
Abstract:
The object of this invention is to provide a steel cord, which has ultrafine steel filaments with a diameter of 0.04-0.14 mm stranded with each other so as to reinforce a tire carcass, and a radial tire for a passenger car using the same. The steel cord includes one core filament with a diameter of 0.04-0.14 mm and 4-7 sheath filaments, each having a diameter of 0.04-0.14 mm, spirally stranded around the core filament. At this time, the steel cord has a diameter of 0.2-0.5 mm and shear strength of 25-35 kgf. Additionally, each of the sheath filaments has a smaller diameter than the core filament, and the core filament and the sheath filaments are made of the steel filaments. The radial tire includes the tire carcass provided with the steel cord and a topping sheet, and the steel cord is embedded in the topping sheet such that a rubber gauge ratio is 200-500 % and a rubber clearance ratio is 60-250 %. The steel cord has improved physical properties, such as shear strength and durability, to reduce a thickness of a carcass including the steel cord, leading to the reduction of a weight of the radial tire. Furthermore, controlling stability and durability of the radial tire are improved, thereby reducing costs of maintenance of the passenger car.
Abstract:
A pneumatic tire comprises a cord-reinforced layer such as carcass, belt, bead reinforcing layer which is made of metallic cords, each metallic cord is made up of six to twelve metallic filaments whose diameter is in a range of from 0.15 to 0.45 mm, the metallic filaments include waved filaments and unwaved filaments, each waved filament is two-dimensionally waved at a wave pitch and wave height before twisted, the wave pitch is in a range of from 5.0 to 35.0 times the diameter of the filament, and the wave height is in a range of from 0.2 to 4.0 times the diameter of the filament, and the metallic filaments are twisted together into the cord at a twist pitch of from 10 to 40 mm so that the two-dimensionally waved filaments are each subjected to a certain rotation around its axial.
Abstract:
A steel cord is composed of three to six steel filaments each having a filament diameter of from 0.25 to 0.45 mm, the three to six steel filaments including shaped filaments and twisted together, wherein the shaped filaments are, before twisted together, coiled to be set in a form of coil having a coil diameter of less than 5 mm and a coil pitch of more than 5 mm, the shaped filaments include at least two kinds of shaped filaments which are different in respect of the form of coil, the shaped filaments are twisted together while the coil diameter is reduced, the elongation of the cord at 50N load is less than 0.2%, and the cord strength is in a range of from 2500 to 3500 N/sq.mm.