Abstract:
The present disclosure relates to a system and method of controlling a vehicle of construction equipment, which calculate a target engine torque from compensation torque information using torque information generated in a hydraulic pump and an engine speed error and transmit the calculated target engine torque, thereby more stably performing engine control while responding to a rapid load variation of the hydraulic pump.
Abstract:
A load application means, which applies a load to an engine such that a temperature of exhaust gas is raised to a temperature required to burn particulate matter, is comprised of an electric load application means for applying the load to the engine to raise the temperature of the exhaust gas by operating an electric assist motor to generate electric power and a hydraulic load application means for applying the load to the engine to raise the temperature of the exhaust gas by increasing a delivery pressure of a variable displacement hydraulic pump, and a selection control unit is provided for performing control processing to selectively actuate the electric load application means and/or the hydraulic load application means.
Abstract:
A construction machine provided with an exhaust gas purifying device for an internal combustion engine includes an energy-wasting operation judging unit that judges whether or not an operation of the construction machine is an energy-wasting operation, a judgment result notifier that notifies a judgment result of the energy-wasting operation judging unit to an outside, a regeneration treatment judging unit that judges whether or not a regeneration treatment of the exhaust gas purifying device is to be conducted, and a notification restricting unit that restricts the judgment result notifier from notifying the judgment result of the energy-wasting operation judging unit when the regeneration treatment judging unit judges that the regeneration treatment of the exhaust gas purifying device is to be conducted.
Abstract:
An engine control device for a work vehicle decides that an idling stop condition is established when the front device is in the unengaged slate, the steering device is in the engaged state, the accelerator pedal is in the non-operation state, either the transmission is in the neutral state or the parking brake device is in the engaged state or the transmission is in the neutral state and also the parking brake device is in the engaged state, and the service brake device is in the unengaged state, and stops an engine when it is decided that it passes the predetermined length of time since it was decided that the idling stop condition was established.
Abstract:
An engine control apparatus for controlling an engine which drives a hydraulic pump to discharge operation oil, the engine control apparatus includes: a pump driving power limit unit configured to limit pump driving power, which is power used to drive the hydraulic pump, based on pressure of the operation oil discharged by the hydraulic pump when in a state in which a part of the operation oil discharged by the hydraulic pump is released because pressure of the operation oil discharged by the hydraulic pump has become equal to or higher than preset relief pressure; and an engine output control unit configured to control output of the engine so that target speed, which is speed of the engine set as a target, becomes equal to or higher than a value of a point of time when limiting of the pump driving power is started.
Abstract:
The present disclosure provides a power control apparatus of a construction machine, including: an engine connected to a hydraulic pump to drive the hydraulic pump; and a controller for calculating an engine load ratio defined as a ratio of a load torque of the engine for an engine maximum torque calculated from an input engine target RPM, and calculating an engine RPM command value according to the engine load ratio such that the engine is driven at the target RPM to output the calculated engine load ratio and engine RPM command value to the engine.
Abstract:
The present invention includes a target rotation speed setup section (17) for setting a target rotation speed of an engine (1); load detection means (21) for detecting a load on a hydraulic pump (3); an assist output computation section (19) for calculating an assist output to be generated by a motor generator in accordance with a rotation speed deviation ΔN, which is the difference between an actual rotation speed and the target rotation speed, or in accordance with the load on the hydraulic pump; an absorption torque upper limit computation section (23) for calculating an absorption torque upper limit value of the hydraulic pump (3); and an operation signal generation section (24) for generating the operation signal to be output to a pump displacement adjustment device (45). When the rotation speed deviation ΔN is equal to or more that a setting NC which is determined in accordance with the assist output value, the absorption torque upper limit computation section reduces the absorption torque upper limit value of the hydraulic pump from the calculated value.
Abstract:
A drivetrain system for a mobile machine is disclosed. The drivetrain system may have an engine, a generator driven by the engine to generate electric power, and a traction motor driven by the electric power from the generator. The drivetrain system may also have a controller in communication with the engine, the generator, and the traction motor. The controller may be configured to determine a change in loading on the traction motor, and determine a change in fueling of the engine that will be required to accommodate the change in loading on the traction motor. The controller may also be configured to selectively rate-limit the change in fueling, and implement the rate-limited change in fueling prior to transmission of the change in loading on the traction motor to the engine.
Abstract:
This invention provides a traveling system for an engineering machine, adapted to limit a maximum traveling speed of the machine without causing decreases in engineering work efficiency or in accelerating performance during a start of traveling, and to improve fuel efficiency by suppressing a loss of engine output horsepower under the limited state of the maximum traveling speed. During fourth-gear shift control process, capacities of first and second hydraulic motors 23, 24 are controlled in coordinative form and the second hydraulic motor 24 has its minimum tilting amount limited to a tilting amount limit q2cmin. In addition, when a tilting amount of the first hydraulic motor 23 reaches a minimum tilting amount q1min, the engine 10 has its maximum engine speed limited to a first engine speed limit Ncmax1 (e.g., 1,800 rpm).
Abstract:
An upstream cylinder (21) and a downstream cylinder (24) are fixedly mounted to a support member (19), and a filter cylinder (26) is provided mountably and dismountably between the cylinders (21) and (24). In consequence, only the filter cylinder (26) can be dismounted with the cylinders (21) and (24) left as they are on the support member (19), so that the maintenance operation of a particulate matter removing filter (28) can be performed easily. In addition, pressure conduits (32) and (33) and a pressure sensor (34) of a pressure detection unit (31) for detecting a clogged state of the particulate matter removing filter (28) are disposed at positions offset from a moving path (30) of the filter cylinder (26). In consequence, only the filter cylinder (26) can be easily mounted or dismounted without being obstructed by the pressure conduits (32) and (33) and the pressure sensor (34).