Abstract:
An optical device includes: a light source part configured to project illumination light toward a sensing region; a photodetector configured to receive reflected light of the illumination light reflected on the sensing region; and a condenser mirror. The condenser mirror has a through hole through which the illumination light from the light source part passes and an optical axis of the light source part and an optical axis of the condenser mirror are aligned with each other. A reflection surface of the condenser mirror has a shape obtained by cutting out a columnar body extending in a projection direction of the illumination light, with a spheroid whose rotation axis is a major axis. The photodetector is disposed in a direction toward a first focal position of the condenser mirror. The sensing region is set in a direction toward a second focal position of the condenser mirror.
Abstract:
System, including methods and apparatus, for optical detection. The system may comprise a light source to generate a beam of light, an optical element, and a detector. The optical element may include a light guide having a shaft and a tip, with the tip forming a beveled end of the light guide. The optical element may extend into the beam, such that the tip and at least a portion of the shaft are located inside the beam, and a window of the optical element is located outside the beam. Light of the beam incident on the tip may be transmitted longitudinally through the light guide and out the window, while light of the beam incident on the shaft may be transmitted transversely through the shaft and remains in the beam downstream. The detector may be configured to detect light received from the window.
Abstract:
Disclosed is a random light collector device including a reflecting cavity configured to enclose a random light source that randomly transmits photons. The reflecting cavity has an inner wall adapted to reflect at least a portion of the photons to an output port and guiding means for directing the photons to a photodetector. The guiding means is a hollow tube having an inner wall adapted to reflect the photons, wherein a first end of the hollow tube is connected to or positioned adjacent to the output port of the reflecting cavity and wherein the photodetector is provided within the hollow tube or at a second end such that a sensitive area of the photodetector covers the cross-section of the second end.
Abstract:
A monitoring system for an lithographic system that may be utilized in an extreme ultraviolet lithographic system is disclosed. In a monitoring system according to the present invention, a plurality of detectors are positioned to receive radiation from a pattern of positions on a mirror that is part of the lithographic system. In some embodiments, the plurality of detectors may be positioned on the mirror. In some embodiments, the plurality of detectors may be positioned behind the mirror and receive radiation through holes formed in the mirror. In some embodiments, radiation from the pattern of positions may be reflected by facets into the detectors.
Abstract:
Feature points (41, 42, 43) in the heat image (10) of a casting die (1) are extracted and a predetermined geometrical conversion processing is performed on the heat image (10) such that the feature points are superimposed on the reference feature points (61, 62, 63) set in a reference heat image (30) picked up previously to generate a corrected heat image (20). A difference image (40) is generated by superimposing the corrected heat image (20) and the reference heat image (30) such that the corrected feature points (51, 52, 53) in the corrected heat image (20) is superimposed on the corresponding reference feature points (61, 62, 63). With such an arrangement, a highly reliable difference image can be generated even when the imaging field of vision slips off among a plurality of heat images.
Abstract:
Aspects of the subject matter described herein relate to reducing error in images obtained from an image-acquiring system. An image-acquiring system may be modeled as light received from a primary path, light received from a secondary path, and light received from all other paths. Light received from the secondary and other paths may cause error in images captured by the image-acquiring system. By compensating for this light, the error may be reduced. Other aspects are described in the specification.
Abstract:
An optical measuring device according to the present invention includes: a plane mirror (3), which has a central opening that functions as either a light entering window or a light source fitting hole (5) and an observation window 6′ that enables a photodetector (6) to take measurements; and an integrating hemisphere (2), which has its center of radius of curvature defined within the central opening of the plane mirror (3) and of which the inner wall surface functions as a light diffuse reflective surface (1). The plane mirror (3) and the integrating hemisphere (2) form an integrating space inside.
Abstract:
In one embodiment, apparatus is provided with a light source, an optic element, at least one photosensor, and a control system. The optic element has a reflective material on a surface thereof, and is positioned to receive and reflect light emitted by the light source. The at least one photosensor is mounted to the surface of the optic element on which the reflective material resides, over a portion of the optic element on which the reflective material does not reside. The control system is operably associated with both the photosensor(s) and the light source, to regulate the light source's light output in accordance with measurements received from the photosensor(s).
Abstract:
A hemispherical detector comprising a plurality of photodetectors arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end and an open end, the open end defining a substantially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.