Abstract:
Disclosed herein is an ion implantation apparatus for use in manufacturing of a semiconductor device, which has a software program including an option for selecting a manipulator, enabling a time for beam tuning to be minimized. The ion implantation apparatus further includes a manipulator for extracting and focusing an ion source and an ion beam, a control block for controlling overall operation of the ion implantation apparatus and recognizing a newly installed manipulator, and a control window on which a selection menu is displayed, allowing recipe data to be selected on a screen. When installing a replacement manipulator, recipe data for the replacement manipulator can be selected to improve beam tuning set up time.
Abstract:
A method of fabricating a three-dimensional microstructure provides data corresponding to information relating to the structure of a three-dimensional microstructure design. A sample is processed in accordance with the provided data by irradiating the sample with a charged-particle beam while controlling processing conditions of the charged-particle beam. Dimensions of the processed sample are compared with the provided data to identify differences between the structure of the processed sample and the structure of the three-dimensional microstructure design. The sample is then irradiated again with a charged-particle beam to correct the identified structural differences while adjusting the processing conditions of the charged-particle beam to thereby fabricate a three-dimensional microstructure having a structure substantially the same as the structure of the three-dimensional microstructure design.
Abstract:
There are provided a fabrication method of a nanostructure by FIB-CVD which enables fabrication of a three-dimensional nanostructure, especially that without a support such as a terrace structure or a hollow structure, and a drawing system thereof. The three-dimensional nanostructure is fabricated by controlling a focused ion beam to determine a beam irradiation position or time based on discrete drawing data of a multilayer structure generated by calculating a cross-sectional shape divided in a vertical direction of a three-dimensional nanostructure model designed using an electronic microcomputer.
Abstract:
A technique for tuning an ion implanter system is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for tuning an ion implanter system having multiple beam-line elements. The method may comprise establishing one or more relationships among the multiple beam-line elements. The method may also comprise adjusting the multiple beam-line elements in a coordinated manner, based at least in part on the one or more established relationships, to produce a desired beam output.
Abstract:
An electron microscope observation system and an observation method are provided. The electron microscope observation system and the observation method can reduce initial investment, and can eliminate burden of maintenance of the apparatus, and can easily and appropriately perform preparation of a sample.An electron microscope, an image display unit of an electron microscope center side for displaying an image of image signals obtained by irradiating electrons on a sample using the electron microscope, a transmission path for transmitting the image signals and an image display unit of an operation center side for displaying a screen of the electron microscope by the image signals are provided, and an observation appointment and approval screen is displayed on the two image display units, and the sample preparation-processed in the observation center side based on an instruction given from the operation center is loaded, and observation of the sample is executed based on sample observation condition information to output image information, and the observation image is displayed on the two image display unites, and charge processing is executed based on a content level of the observation including preparation processing of the sample and occupying hours of the electron microscope to display the charge processing result.
Abstract:
A method of analyzing a failure of a sample, such as a wafer or a package unit made from a die sliced from the wafer, uses a computer aided design (CAD) tool in conjunction with a dual beam scanner and reverse engineering to improve the yield of the product. The computer aided design tool provides navigation to a location of interest over a layout of a wafer sample which has failed a test. The location of interest of the sample is then inspected using the dual beam scanner. The inspection may be made with either a focused ion beam scan or with a scanning electron microscope scan to provide different types of scan images and information. After inspection, a reverse engineering process (stripping back) is performed on the sample and the sample is inspected again to determine the cause of the failure of the sample. Once the cause of the failure is determined, the manufacturing process can be changed to improve the yield of the wafers.
Abstract:
A high precision system for machining substrates by means of an energy beam includes real time digital signal processor control and a deflection system providing control, within a predetermined field of the substrate, of the angle at which the beam machines the substrate. An electron beam is used in a vacuum chamber in a preferred embodiment. The system also includes an x-y table for positioning the substrate and may have provision for detecting the x-y position and angular misregistration of the substrate. Dynamic forms and stigmator control may be used to produce a uniform beam within the field. The system allows a high speed vector machining process, which optimizes the overall system throughput by minimizing the settling time of the deflection system.
Abstract:
A high precision system for machining substrates by means of an energy beam includes real time digital signal processor control and a deflection system providing control, within a predetermined field of the substrate, of the angle at which the beam machines the substrate. An electron beam is used in a vacuum chamber in a preferred embodiment. The system also includes an x-y table for positioning the substrate and may have provision for detecting the x-y position and angular misregistration of the substrate. Dynamic forms and stigmator control may be used to produce a uniform beam within the field. The system allows a high speed vector machining process, which optimizes the overall system throughput by minimizing the settling time of the deflection system.
Abstract:
A charged particle beam drawing device includes: a storage unit that stores a pattern generation program for generating pattern data, the pattern generation program being a program in which an instruction for specifying a type of a figure and an instruction for specifying a regular arrangement of the figure are described; an execution unit that executes the pattern generation program stored in the storage unit; and a control unit that performs drawing control based on the pattern data generated by the executed pattern generation program.
Abstract:
The invention is directed to a technique for reducing the time from the start of fabrication of a prototype structure to the completion of fabrication of a real structure. A device processing method includes steps of: fabricating a first structure using an ion beam under a first condition in a first region on a substrate; measuring a size of the first structure which is fabricated; comparing the measurement result with design data; determining a second condition from the comparison result; and fabricating a second structure using the ion beam under the second condition in a second region on the substrate.