Abstract:
Provided is a supersonic beam apparatus including a nozzle for injecting a gas at a supersonic velocity into a vacuum; a skimmer arranged at a downstream of the nozzle; and an ionization part for ionizing a particle in a supersonic beam formed by the skimmer from the gas injected from the nozzle to form a cluster ion beam, wherein a set position of the skimmer is one of a maximum position where an amount of cluster generation in a relationship of the amount of cluster generation with respect to a distance between the nozzle and the skimmer is maximized and a position closer to the nozzle than the maximum position.
Abstract:
The invention relates to devices and methods in mass spectrometers for the generation of ions of heavy molecules, especially biomolecules, by bombarding them with uncharged clusters of molecules. The analyte ions which are generated or released by cluster bombardment of analyte substances on the surface of sample support plates show a broad distribution of their kinetic energies, which prevents good ion-optical focusing. In the invention, the kinetic energies are homogenized in a higher-density collision gas. The collision gas is preferably located in an RF ion guide, more preferably an RF ion funnel, which can transfer the ions to the mass analyzer. The collision gas may be introduced with temporal pulsing, coordinated or synchronized with the pulsed supersonic gas jet. The collision gas may be pumped off again before the next supersonic gas pulse. In an advantageous embodiment, the collision gas can originate from the supersonic gas jet itself.
Abstract:
A method of modifying a material layer on a substrate is described. The method comprises forming the material layer on the substrate. Thereafter, the method comprises establishing a gas cluster ion beam (GCIB) having an energy per atom ratio ranging from about 0.25 eV per atom to about 100 eV per atom, and modifying the material layer by exposing the material layer to the GCIB.
Abstract:
A charged particle separation apparatus that separates ionized gas clusters is disclosed. The charged particle separation apparatus includes three or more electric field applying parts arranged in an incident direction of an ionized gas cluster, wherein each of the electric field applying parts includes a pair of electrodes; an electric power source configured to supply alternating-current electric voltages to the three or more electric field applying parts in such a manner that an alternating-current electric voltage applied across one pair of the electrodes of one of the three or more electric field applying parts is different in phase from an alternating-current voltage applied across another pair of the electrodes of an adjacent one of the three or more electric field applying parts; and a plate including an opening in an extension of the incident direction.
Abstract:
In an ion bean acceleration system, transient electrical arc suppression and ion beam accelerator biasing circuitry. Two-terminal circuitry, connectable in series, for suppressing arcs by automatically sensing arc conditions and switch from at least a first operating state providing a relatively low resistance electrical pathway for current between source and load terminals to at least a second, relatively high resistance electrical pathway. Selection of circuit component characteristics permits controlling the delay in returning from the second state to the first state after the arc has been suppressed.
Abstract:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+ or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
Abstract:
In an ion bean acceleration system, transient electrical arc suppression and ion beam accelerator biasing circuitry. Two-terminal circuitry, connectable in series, for suppressing arcs by automatically sensing arc conditions and switch from at least a first operating state providing a relatively low resistance electrical pathway for current between source and load terminals to at least a second, relatively high resistance electrical pathway. Selection of circuit component characteristics permits controlling the delay in returning from the second state to the first state after the arc has been suppressed.
Abstract:
A neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam. The apparatus includes an electron source, and a circularly cylindrical ionizing region that is substantially free of magnetic fields. In one embodiment of the invention, the beam is a gas cluster beam, and the electron source includes a heated filament for emitting thermions, the filament including one or more direction reversals shaped to produce self-nulling magnetic fields so as to minimize the magnetic field due to filament heating current. In another embodiment of the invention, a neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam includes at least one electron source, and an elliptically cylindrical ionizing region. In one embodiment, the elliptically cylindrical ionizing region includes a pair of co-focal elliptically cylindrical electrodes biased so as to cause electrons emitted from the at least one electron source to orbit repeatedly through the axis of the beam to be ionized.
Abstract:
A method and device for mass spectrometry analysis, wherein a mass spectrometer is adapted for use with helium droplets, as an ionization site medium, with a proton being initially captured by a large helium droplet (null10,000 helium atoms) and then cooled evaporatively to 0.4 Kelvin. The protonated helium droplet then picks up a neutral molecule of interest and the neutral molecule is protonated inside of the droplet with the liquid helium droplet acting as a heat bath to provide rapid cooling of the newly formed protonated molecule. As a result, there is essentially no energy available, at 0.4 Kelvin, for the protonated molecule to fragment. Remaining liquid helium is removed and the stably maintained protonated molecule is detected by a mass spectrometer. Since the molecules do not fragment when protonated (ionized), each compound in a mixture analyses gives one mass and the number of ions of a particular mass detected is directly proportional to the molar percentage of that mass in the sample. The device for effecting the method, comprises the elements of : (1) Helium cluster or droplet source; (2) Proton source for introduction of protons to the droplet (i.e., ionization); (3) atmospheric pressure (AP) Source for reduction of pressure to form a low pressure stream; (4) Cell pick-up elements where compound molecules are protonated or ionized at low temperature; (5) Desolvation area for removal of residual helium; and (6) Mass spectrometer and detector.
Abstract:
A beam processing system and method of operating are described. In particular, the beam processing system includes a beam source having a nozzle assembly that is configured to introduce a primary gas through the nozzle assembly to a vacuum vessel in order to produce a gaseous beam, such as a gas cluster beam, and optionally, an ionizer positioned downstream from the nozzle assembly, and configured to ionize the gaseous beam to produce an ionized gaseous beam. The beam processing system further includes a process chamber within which a substrate is positioned for treatment by the gaseous beam, and a secondary gas source, wherein the secondary gas source includes a secondary gas supply system that delivers a secondary gas, and a secondary gas controller that operatively controls the flow of the secondary gas injected into the beam processing system downstream of the nozzle assembly.