摘要:
The present disclosure provides methods comprising administering to the individual an effective amount of an agent that decreases or inhibits TIGIT expression and/or activity and an anti-cancer agent and/or an anti-cancer therapy. Further provided are kits comprising an anti-cancer agent, an agent that decreases or inhibits TIGIT expression and/or activity, or both, as well as instructions for use thereof.
摘要:
The present application discloses an immunogenic composition comprising at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA, MenC, MenY and MenW which is/are conjugated through a linker to a carrier protein(s), and one or more different saccharides is/are selected from a second group consisting of MenA, MenC, MenY and MenW which is/are directly conjugated to a carrier protein(s).
摘要:
The present invention relates to a recombinant adenoviral vector for generating immunity against enterovirus infection. In one embodiment, the recombinant adenoviral vector of the invention comprises an expression cassette encoding a PI protein and a 3 CD protease of an enterovirus. In another embodiment, the recombinant adenoviral vector of the invention comprises an expression cassette encoding a 3C protease or a 3CD protease of an enterovirus. The present invention also relates to a vaccine composition comprising the recombinant adenoviral vector as described. A method of inducing an immune response in a subject against enterovirus infection using the recombinant adenoviral vector and the vaccine composition is provided. Further provided is a method for producing virus like particles of an enterovirus by expressing the adenoviral vector as described herein in mammalian cells.
摘要:
The present invention describes combination treatment comprising a PD-1 axis binding antagonist and an agent that decreases or inhibits TIGIT expression and/or activity and methods for use thereof, including methods of treating conditions where enhanced immunogenicity is desired such as increasing tumor immunogenicity for the treatment of cancer or chronic infection.
摘要:
The present invention provides an inhibitor against CD112 (Nectin-2, PVRL2), CD155 (PVR), Galectin-9, TIM-3 and/or TIGIT for use in a method of treatment of a blood-borne cancer, in particular acute myeloid leukemia (AML). Moreover, the present invention provides a pharmaceutical composition comprising an inhibitor against CD112 (Nectin-2, PVRL2), CD155 (PVR), Galectin-9, TIM-3 and/or TIGIT and a CAR T cell. The present invention further provides a pharmaceutical composition comprising an inhibitor against CD112 (Nectin-2, PVRL2), CD155 (PVR), Galectin-9, TIM-3 and/or TIGIT and an antibody construct that is capable of engaging T cells.
摘要:
We provide new methods of in vitro or in vivo enhancing the T-cell stimulatory capacity of human DCs and the use thereof in cancer vaccination. The method includes the introduction of different molecular adjuvants to human DCs by contacting or modifying them with mRNA or DNA molecule(s) encoding CD40L, and CD70 or constitutively active TLR4 (caTLR4).
摘要:
Disclosed herein are methods of using anti-ILT5 antibodies and ILT5-binding fragments thereof for the treatment of various diseases and for use as immunostimulatory adjuvants.
摘要:
Methods and compositions are provided for delivery of a polynucleotide encoding a gene of interest, typically an antigen, to a dendritic cell (DC). The virus envelope comprises a DC-SIGN specific targeting molecule. The methods and related compositions can be used to treat patients suffering from a wide range of conditions, including infection, such as HIV/AIDS, and various types of cancers.
摘要:
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for selection of such attenuated viruses.In particular, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo but demonstrate reduced pathogenicity, and therefore are well suited for live virus vaccines, and pharmaceutical formulations.