Abstract:
A single crystal semiconductor manufacturing method for realizing a dislocation-free single crystal while not varying or hardly varying electric power supplied to a heater when and after a seed crystal comes into contact with a melt. The allowable temperature difference ΔTc not causing dislocation in the seed crystal is determined according to the concentration (C) of the impurities added to the seed crystal (14) and the size (diameter D) of the seed crystal (14). When the seed crystal (14) comes into contact with the melt (5), electric power supplied to a bottom heater (19) is fixed, and a magnetic field produced by a magnet (20) is applied to the melt (5). Electric power supplied to a main heater (9) is controlled so that the temperature at the surface of the melt (5) which the seed crystal (14) comes into contact with may be a target value. After the seed crystal (14) comes into contact with the melt (5), single crystal silicon is pulled up without performing a necking process.
Abstract:
The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
Abstract:
Provided are a thin film transistor and method of fabricating the same, in which an amorphous silicon layer is formed on a substrate, a capping layer containing a metal catalyst having a different concentration according to its thickness is formed on the amorphous silicon layer, the capping layer is patterned to form a capping layer pattern, and the amorphous silicon layer is crystallized, such that the density and position of seeds formed at an interface between the amorphous silicon layer and the capping layer pattern is controlled, thereby improving the size and uniformity of grains, and in which polycrystalline silicon of desired size and uniformity is selectively formed at a desired position by one crystallization process, resulting in a thin film transistor having excellent and desired properties. The thin film transistor includes a substrate; a plurality of semiconductor layers formed on the substrate, the semiconductor layers including grains of different sizes obtained by crystallizing an amorphous silicon layer beneath a capping layer into a polycrystalline silicon layer using the capping layer pattern containing a metal catalyst with a predetermined distribution and having a predetermined height and width; and a gate insulating layer, a gate electrode, an interlayer insulting layer, and source and drain electrodes formed on the semiconductor layers. Therefore, the crystallization process is performed using the capping layer pattern containing the metal catalyst, which has concentration and distribution varying depending on the thickness of the capping layer pattern, thereby improving the size and uniformity of grains. In addition, the polycrystalline silicon of desired size and uniformity is selectively formed in a desired position by one crystallization process, resulting in the thin film transistor having excellent and desired properties.
Abstract:
The present invention provides a heater for manufacturing a crystal by the Czochralski method comprising at least terminal portions supplied with current and a heat generating portion by resistance heating, and being arranged so as to surround a crucible containing a raw material melt, wherein the heater has a uniform heat generation distribution to the raw material melt after deformation while in use during crystal manufacture. It is thus possible to prevent hindrance of monocrystallization and unstable crystal quality caused by ununiform temperature in the raw material melt due to deformation of the shape of the heater's heat generating portion while in use during crystal manufacture.
Abstract:
Methods are disclosed for inhibiting heat transfer through lateral sidewalls of a support member positioned beneath a crucible in a directional solidification furnace. The methods include the use of insulation positioned adjacent the lateral sidewalls of the support member. The insulation inhibits heat transfer through the lateral sidewalls of the support member to ensure the one-dimensional transfer of heat from the melt through the support member.
Abstract:
This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
Abstract:
This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
Abstract:
A method of manufacturing a silicon monocrystal by FZ method, wherein a P-type or N-type silicon crystal having been pulled up by CZ method is used as a raw material. While impurities whose conductivity type is the same as that of the raw material are supplied by a gas doping method, the raw material is recrystallized by an induction-heating coil for obtaining a product-monocrystal.
Abstract:
Provided is a method for crystallizing using a laser mask for selectively crystallizing active regions without a laser shot mark, including: providing an array substrate in which N×M active regions are defined; positioning a laser mask having first and second blocks over the substrate, wherein the first and second blocks have first and second mask patterns, respectively, and the second mask pattern is a reverse pattern of the first mask pattern; irradiating a first laser beam onto the active regions through the first block; and irradiating a second laser beam onto the active regions through the second block.
Abstract:
Provided is a MgO single crystal for obtaining a magnesium oxide (MgO) single crystal deposition material which is prevented from splashing during the vapor deposition in, e.g., an electron beam deposition method without reducing the deposition rate, and for obtaining a MgO single crystal substrate which can form thereon, e.g., a superconductor thin film having excellent superconducting properties. A MgO single crystal having a calcium content of 150×10−6 to 1,000×10−6 kg/kg and a silicon content of 10×10−6 kg/kg or less, wherein the MgO single crystal has a variation of 30% or less in terms of a CV value in detected amounts of calcium fragment ions, as analyzed by TOF-SIMS with respect to the polished surface of the MgO single crystal. A MgO single crystal deposition material and a MgO single crystal substrate for forming a thin film obtained from the MgO single crystal.
Abstract translation:本发明提供一种用于获得氧化镁(MgO)单晶沉积材料的MgO单晶,其在例如电子束沉积方法中在气相沉积期间防止溅射而不降低沉积速率,并且获得MgO单晶衬底 其可以在其上形成,例如具有优异超导性能的超导体薄膜。 钙含量为150×10 -6〜1,000×10 -6 kg / kg,硅含量为10×10 -6 kg / kg以下的MgO单晶,其中,MgO单晶的变化率为30% 根据TOF-SIMS相对于MgO单晶的抛光表面的分析,检测到的钙碎片离子量的CV值以下。 一种MgO单晶沉积材料和用于形成由MgO单晶获得的薄膜的MgO单晶衬底。