Abstract:
A test strip with a sample chamber is secured to a meter. The sample chamber in the portion of the test strip that extends out of the meter is illuminated by transmitting light from a light source inside the meter internally through the test strip towards the sample chamber. By way of analogy, the test strip acts in a fashion similar to a fiber optic cable or optical wave guide by transmitting the light from the meter to the remotely located sample chamber that extends outside the meter. The user is then able to easily see the sample chamber of the test strip in dark conditions so that the user is able to readily align the sample chamber with the drop of fluid on the skin as well as view the sample chamber in order to ensure proper filling. The light also illuminates a test strip slot into which the test strip is inserted.
Abstract:
A test element, analytical system and method for optical analysis of fluid samples is provided. The test element has a substrate and a microfluidic channel structure, which is enclosed by the substrate and a cover layer. The channel structure has a measuring chamber with an inlet opening. The test element has a first level, which faces the cover layer, and a second level, which interconnects with the first level such that the first level is positioned between the cover layer and the second level. A part of the measuring chamber extending through the first level forms a measuring zone connecting with a part of the measuring chamber that extends partially into the second level, forming a mixing zone. Optical analysis of fluid samples is carried out by light guided through the first level parallel to the cover layer, such that the light traverses the measuring zone along an optical axis.
Abstract:
A system and method for receiving and ejecting a test strip of a fluid testing device. The system includes parallel first and second guide rails defining a rail cavity between the guide rails. A sled includes a sled post and opposed first and second side leg sets each having at least one deflectable leg. Each of the deflectable legs is externally slidably engaged to one of the guide rails limiting the sled to only sliding motion in either a loading direction or an opposite ejection direction. An actuator arm is rotatably connected to a mechanism assembly. The sled post is received in an actuator arm slot. Actuator arm rotation in a loading rotational direction displaces the sled in the loading direction in a sliding motion. Subsequent opposite rotation of the actuator arm in an ejection rotational direction displaces the sled in the ejection direction and ejects the test strip.
Abstract:
A test element is disclosed for analyzing a human or animal body fluid sample. The test element includes a substrate carrying a test field with a reagent for effecting a detection reaction when exposed to the body fluid sample, and an optical data storage in which data regarding the test element, preferably calibration data, is stored. Accordingly, the data storage is a holographic data storage. A hologram reader also is disclosed for reading the data storage of such a test element. Moreover, a hologram label and a method for manufacturing a hologram label are disclosed, as is a medical product including a holographic data storage in which data regarding the product is stored.
Abstract:
A private extension of the IEEE 11073 standard for enabling pass-thru communication between a external computing device and a medical device via a diabetes management device is disclosed herein. Within this context, a diabetes management system for configured to allow pass thru communication is described. The system includes a diabetes management device in communication with a external computing device and the first medical device. A pass-thru module of the diabetes management device uses a set of pass-thru commands for establishing a pass-thru communication path and enabling communication between the external computing device and the first medical device, and wherein the set of pass-through commands is defined in compliance with a communication protocol defined in accordance with IEEE standard 11073-20601.
Abstract:
A system and method for locating sample vessels are presented. The system comprises a holder having an array of positions for holding sample vessels. An information tag is attached to the holder for storing and/or retrieving machine-readable information related to the positions of sample vessels with respect to the array of positions. The system further comprises a handheld device capable of reading information on the information tag. The handheld device has an input for inputting information related to a to-be-located sample vessel and an output for outputting a position of the to-be-located sample vessel with respect to the array of positions based on information stored in the information tag. The method comprises inputting information related to a to-be-located sample vessel into the handheld device, reading information stored in the holder's information tag with the handheld device; and outputting a position of the to-be-located sample vessel.
Abstract:
Methods and devices for determining factor Xa inhibitors, in particular heparins and fractionated or low-molecular-weight heparins, as well as direct factor Xa inhibitors in blood samples. The methods include contacting a blood sample with a detection reagent that contains at least one thrombin substrate having a peptide residue that can be cleaved by thrombin and is amidically bound via the carboxyl end to an electrogenic substance, and with a known amount of factor X reagent and an activator reagent which induces the conversion of factor X into factor Xa. Subsequently, in a second step, the amount or activity of the electrogenic substance that is cleaved from the thrombin substrate by the factor Xa-mediated thrombin activation and/or the time course thereof is determined as the measurement signal using electrochemical methods. In a third step, the amount of the factor Xa inhibitor in the sample of the blood to be analyzed or a measured quantity that correlates therewith, in particular a clotting time that correlates therewith, is determined on the basis of this measurement signal.
Abstract:
Illustrative embodiments of automated sample workcells and methods of operation are disclosed. The methods may include receiving a first plurality of samples, each of the first plurality of samples being linked to a requested analysis selected from among a plurality of analysis types; assigning at least one centrifugation parameter to each of the first plurality of samples in response to the requested analysis linked to that sample; loading a second plurality of samples into a centrifuge, the second plurality of samples being selected from among the first plurality of samples and comprising samples that have been assigned at least two different centrifugation parameters; determining a centrifugation parameter of highest centrifugation intensity from among the at least two different centrifugation parameters assigned to samples in the second plurality of samples; and centrifuging the second plurality of samples according to a centrifugation protocol comprising the centrifugation parameter of highest centrifugation intensity.
Abstract:
A sensor may include a substrate having a sensing portion defining a sensor thereon and a circuit mounting portion defining at least one electrically conductive pad that is electrically connected to the sensor. The sensor may be configured to produce a signal indicative of a condition of the patient. An anisotropic medium may be disposed on the circuit mounting portion and may be electrically conductive in a direction through the medium and electrically insulating in directions along the medium. An electrical circuit may be mechanically mounted to the circuit mounting portion of the first substrate via the anisotropic medium with at least one electrically conductive terminal juxtaposed over the at least one electrically conductive pad. The anisotropic medium may establish local electrical contact between the at least one electrically conductive terminal and the at least one electrically conductive pad.
Abstract:
Methods and systems for diagnosing functional and/or structural abnormalities of the heart preceding heart failure, and for predicting the risk of developing heart failure, in a subject comprising measuring a cardiac troponin in a sample and comparing the measurement to a reference value. Other markers, including GDF15 and IGFBP7 are also measured in some embodiments.