Abstract:
In the present disclosure, imidazole-derived materials including M-N—C catalysts, imidazole-derived MOFs and MOF-based M-N—C catalysts as well as methods for preparing the same utilizing mechanochemical synthesis and/or a sacrificial support-based methods are described.
Abstract:
Exemplary embodiments provide solid-state microscope (SSM) devices and methods for processing and using the SSM devices. The solid-state microscope devices can include a light emitter array having a plurality of light emitters with each light emitter individually addressable. During operation, each light emitter can be biased in one of three operating states including an emit state, a detect state, and an off state. The light emitter can include an LED (light emitting diode) including, but not limited to, a nanowire based LED or a planar LED to provide various desired image resolutions for the SSM devices. In an exemplary embodiment, for near-field microscopy, the resolution of the SSM microscope can be essentially defined by the pitch p, i.e., center-to-center spacing between two adjacent light emitters, of the light emitter array.
Abstract:
The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.
Abstract:
The present invention relates to molecules which function as selective modulators (i.e., inhibitors and agonists, preferably inhibitors) of the Ras-homologous (Rho) family of small GTPases, in particular, Cdc42 GTPase and their use to treat diseases, for example cancers, including metastatic cancer, where Cdc42 GTPase is overexpressed or hyperactivated, genetic and acquired diseases where activation of Cdc42 GTPase plays a pivotal role (e.g., neurodegenerative diseases), rheumatoid arthritis, atherosclerosis, diabetes type I, autosomal polycystic kidney diease, cystic kidney disease, precystic kidney disease and microbial infections. Additionally, compounds according to the present invention may be used to inhibit rejection (graft host response) in transplant patients (pursuant to transplantation), to promote immunosuppression, anti-inflammatory response and to mobilize stem cell (migration) in patients in need, among others.
Abstract:
The present invention is a method and system for developing a dynamic scheme for Gamma Knife radiosurgery based on the concept of “dose-painting” to take advantage of robotic patient positioning systems on the Gamma Knife C and Perfexion units. The spherical high dose volume created by the Gamma Knife unit will be viewed as a 3D spherical “paintbrush”, and treatment planning is reduced to finding the best route of this “paintbrush” to “paint” a 3D tumor volume. Under the dose-painting concept, Gamma Knife radiosurgery becomes dynamic, where the patient is moving continuously under the robotic positioning system.
Abstract:
In one embodiment, the invention provides a method of treating a subject suffering from a breast cancer tumor which is non-responsive or intrinsically resistant to anti-estrogen therapy comprising administering a therapeutically effective amount of an inhibitor of alternative (ALT) non-homologous end joining (NHEJ) factor to the subject.In another embodiment the invention provides a method of treating a subject who suffers from a pancreatic cancer which is non-responsive to chemotherapy and/or radiation comprising co-administering a therapeutically effective amount of PARP1 inhibitor and a DNA ligase IIIα inhibitor to the subject. Related diagnostic methods, nucleic acid arrays, devices and kits are also provided.
Abstract:
Novel nano-sized materials and methods for making the same are described. The novel nano-sized materials are suitable for use as catalytic supports and, more specifically, can be decorated with one or more catalytic materials so as to form suitable catalysts for DLFC fuel cells utilizing alkaline media. The present disclosure also provides a small, portable, power supply system that incorporates catalysts utilizing the decorated nano-sized materials described herein.
Abstract:
Novel materials having high surface area rendering them suitable for a variety of applications including, but not limited to: catalysts for methane reforming; ammonia synthesis; alcohol synthesis from syngas; hydrodesulfurization; electrocatalysis for hydrogen evolution reaction; and as corrosion-resistant supports for platinum in PEM fuel cells. In general the method comprises the formation of a high-surface area refractory metal-based material using a novel synthesis pathway that avoids the production of intermediate oxide. The method may include the in situ formation of a sacrificial support that can be removed using non-aggressive means, such as, for example, chemical etching with a mild acid or by altering reaction conditions.
Abstract:
A method and device for cooling electronics is disclosed. The device includes a doped crystal configured to resonate at a Stark manifold resonance capable of cooling the crystal to a temperature of from about 110K to about 170K. The crystal host resonates in response to input from an excitation laser tuned to exploit the Stark manifold resonance corresponding to the cooling of the crystal.