Abstract:
A memory cell in an EEPROM includes a floating gate transistor that includes a first conducting terminal and a control gate. A method of controlling the memory cell includes setting a state of the memory cell by simultaneously applying voltage pulses of opposite polarities respectively to the first conducting terminal and to the control gate. The voltage pulses including a first portion having a first slope and a second portion having a second slope, wherein the second slope is based upon the polarities of the voltage pulses. The method allows the amplitude of the voltage pulses to be reduced.
Abstract:
In a particular embodiment using a distributed architecture, the electronic device comprises a source memory means partitioned in N elementary source memories for storing a sequence of input data, processing means clocked by a clock signal and having N outputs for producing per cycle of the clock signal N data respectively associated to N input data respectively stored in the N elementary source memories at relative source addresses, N single port target memories, N interleaving tables containing for each relative source address the number of one target memory and the corresponding relative target address therein, N cells connected in a ring structure, each cell being further connected between one output of the processing means, one interleaving table, and the port of one target memory, each cell being adapted to receive data from said output of the processing means and from its two neighbouring cells or to write at least some of these received data sequentially in the associated target memory, in accordance with the contents of said interleaving tables.
Abstract:
An anti-collision method to identify and select contactless electronic modules (MDL) by a terminal is provided. A module may generate a random identification number prior to a communication, and respond to a general or complementary identification request on a time slot that varies according to its identification number. A non-selected module may generate a new random identification number when it receives a complementary identification request. Thus, the time slot of a non-selected module provided in response to a complementary identification request is not statistically the same as its time slot in response to a previous identification request, and it varies according to its identification number (ID).
Abstract:
The leadframe has a perforation to form, between a central platform and a peripheral part located a certain distance apart, radiating elongate leads. The leadframe has, on its rear face that comes into contact with a bearing surface of a mold, at least one recess and a groove for connecting this recess to the perforation.
Abstract:
A method for interlacing digital data to reduce transmission errors includes dividing a stream of digital data into consecutive blocks of bits, and interlacing each block of bits by writing to an interlacing table. The interlacing table is arranged in the form of rows and columns of memory addresses, with a number of the rows and columns corresponding to predetermined interlacing parameters. The access sequences to the memory addresses for interlacing the blocks of bits are different from each other. The method further includes reading a block of bits in the interlacing table according to a memory addresses access sequence, and also writing bits to a consecutive block of bits according to the memory addresses access sequence during the reading.
Abstract:
An electrically erasable and programmable memory includes an array of memory cells, and a distribution line linked to a receiving terminal of an external supply voltage and to a booster circuit. The distribution line provides an internal supply voltage. The distribution line is also linked to the receiving terminal through a diode or a diode circuit simulating operation of a diode. The memory includes a regulator for triggering the booster circuit when the internal supply voltage becomes lower than a threshold so as to maintain the internal supply voltage close to the threshold when the external supply voltage is too low, at least during the reading of memory cells. The diode or the diode circuit is blocked when the external supply voltage is too low.
Abstract:
A method for scrambling current consumption of an integrated circuit, at least during execution of a confidential operation by the integrated circuit that includes reading confidential data stored therein and/or the calculation of an encryption code is provided. The charge pump is activated to generate current consumption fluctuations on the electrical power supply line of the integrated circuit, at an intensity great enough to mask the current consumption variations associated with the execution of the confidential operation.
Abstract:
A method of programming a row of antifuse memory cells includes breaking down at least N antifuse elements in the memory cells. The breakdown includes the application of a breakdown voltage to the anode of each antifuse element. The antifuse elements are broken down sequentially by groups of P antifuse elements, with P being less than N and at least equal to 1. The antifuse elements of a same group simultaneously receive the breakdown voltage. The breakdown of a next group of antifuse elements immediately takes place after the breakdown of a previous group of antifuse elements.
Abstract:
A bipolar transistor includes a collector. The collector is produced by a process wherein a first substantially homogeneously doped layer is formed at the bottom of a cavity. A second gradually doped layer is then formed by diffusion of dopants of the first substantially homogeneously doped layer.
Abstract:
A memory includes memory cells arranged in rows and in columns, with at least one bit line for each column being coupled to the memory cells of the column. A read/write circuit is coupled to the bit lines and is configured to receive, for each column, a binary datum to be stored in one of the memory cells of the column. The read/write circuit includes, for each column, a latch configured to store a bit of a key, and an encryption circuit configured to encrypt the received binary datum with the bit of the key to provide encrypted binary datum. The read/write circuit controls the bit line to thereby store the encrypted binary datum.