Abstract:
The detection of the presence of a load associated with a power MOS transistor integrated with its control circuit, using a delay determined taking into account the detection with respect to the occurrence of a turn-off control order of the power transistor, and where the filtering time is controlled with the power transistor switching time.
Abstract:
The sequential access memory array is able to store p words each of n bits. Such p test words each made up of n test bits are written in the memory array, the p test words are extracted sequentially and, for each current word extracted, the n test bits that compose it are compared sequentially with n respective expected data bits before extracting the next test word.
Abstract:
A method of manufacturing an integrated circuit is provided. According to the method, first and second stop layers are deposited on a first dielectric layer that covers a first metallization level. The second stop layer is selectively etched with respect to the first stop layer, and the first stop layer is selectively etched with respect to the first dielectric layer. A second dielectric layer and a third stop layer are deposited. The third stop layer is selectively etched with respect to the second dielectric layer, and the first and second dielectric layers are selectively etched with respect to the stop layers so as to form trenches in the second dielectric layer and holes in the first dielectric layer. Additionally, an integrated circuit is provided that includes first and second metallization levels. A dielectric layer is located between the metallization levels, and a first stop layer is located between the dielectric layer and the second metallization level. A second stop layer is located above the first stop layer, and a third stop layer is located above the dielectric material of the second metallization level. In one preferred embodiment, lines of at least one metallization levels are made of copper, and the dielectric layer is made of an organic polymer having an electrical permittivity coefficient of less than 3.
Abstract:
A circuit produces a voltage for the erasure or programming of a memory cell. The circuit includes a capacitor, and a discharge circuit connected to a first terminal of the capacitor. The discharge circuit includes a first transistor, a drain of which is connected to the first terminal of the capacitor. The first transistor activates the discharge circuit when a discharge signal is received by a gate of the first transistor. The discharge circuit includes a slow discharge arm and a fast discharge arm parallel-connected to the source of the first transistor. The discharge circuit produces a low discharge current or a high discharge current for discharging the capacitor as a function of an operating mode selection signal.
Abstract:
A FLASH memory erasable by page includes a flash memory array containing a plurality of floating gate transistors arranged in pages, and a checking circuit for checking the threshold voltages of the floating gate transistors. Programmed transistors that have a threshold voltage less than a given threshold are reprogrammed. The checking circuit includes a non-volatile counter formed by at least one row of floating gate transistors, a reading circuit for reading the address of a page to be checked in the counter, and an incrementing circuit for incrementing the counter after a page has been checked.
Abstract:
The integrated circuit comprises a semiconductor substrate SB supporting a memory cell PM of the DRAM type comprising an access transistor T and a storage capacitor TRC. The access transistor is made on the substrate, and the substrate includes a capacitive trench TRC buried beneath the transistor and forming the storage capacitor, the capacitive trench being in contact with one of the source and drain regions of the transistor.
Abstract:
An integrated circuit is provided that includes a substrate incorporating a semiconductor photodiode device having a p-n junction. The photodiode device includes at least one capacitive trench buried in the substrate and connected in parallel with the junction. In a preferred embodiment, the substrate is formed from silicon, and the capacitive trench includes an internal doped silicon region partially enveloped by an insulating wall that laterally separates the internal region from the substrate. Also provided is a method for fabricating an integrated circuit including a substrate that incorporates a semiconductor photodiode device having a p-n junction.
Abstract:
The semiconductor device comprises a semiconductor substrate (SB) having locally at least one zone (ZL) terminating in the surface of the substrate and entirely bordered, along its lateral edges and its bottom, by an insulating material so as to be completely isolated from the rest of the substrate. The horizontal isolating layer may be a layer of constant thickness or a crenellated layer.
Abstract:
A smart card reader includes a housing for receiving a smart card, a microprocessor, and a connector for connecting the microprocessor to the received smart card for establishing communications therebetween. A voltage source provides a power supply voltage to the microprocessor based upon the smart card being received in the housing. The smart card reader further includes a first switch interposed between the voltage source and a power supply terminal of the microprocessor. The first switch is closed when the received smart card is at an end of travel in the housing so that the power supply voltage is provided to the microprocessor, and is opened when the received smart card is no longer at the end of travel in the housing so that the power supply voltage is not provided to the microprocessor.
Abstract:
In a method for the display of text on a screen of a television receiver, the digital data representing a received text are decoded to give, first, a list of characters to be displayed including at least one character and a color palette including at least one color, and second, a matrix of pixels associated with the list of characters to be displayed. Each element of the matrix of pixels defines the color of a corresponding point of the screen. To obtain a visual effect on at least one point of the screen, at least one color of the color palette is modified. The display method may be implemented in a television receiver.