Abstract:
A method of forming a metal oxide semiconductor (MOS)-controlled bipolar transistor includes tilt angle implanting a first impurity into a semiconductor substrate and implanting a second impurity into the semiconductor substrate to form an emitter and a collector. A corresponding transistor arranged as to combine the large current drive capacity of a bipolar junction transistor (BJT) with the smaller device size of a metal oxide semiconductor field effect transistor (MOSFET) is also provided. The transistor includes a semiconductor structure, a gate located proximate the semiconductor structure, a gate insulator disposed intermediate the semiconductor structure and the gate, a source region located in the semiconductor structure, a drain region located in the semiconductor structure, and a buffer region located in the semiconductor structure proximate the drain region.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dual amorphization technique. The technique creates a shallow amorphous region and a deep amorphous region 300 nm thick. The shallow amorphous region is between 10-15 nm below the top surface of the substrate, and the deep amorphous region is between 150-200 nm below the top surface of the substrate. The process can be utilized for P-channel or N-channel metal oxide semiconductor field effect transistors (MOSFETs). A step separate from the annealing step for the source/drain regions is utilized for annealing the gate conductor.
Abstract:
A method of manufacturing an integrated circuit to optimize the contact resistance between impurity diffusing layers and silicide is disclosed herein. The method includes implanting a first material to a layer of semiconductor to create a buried amorphous silicon layer; implanting a second material in the layer of semiconductor and buried amorphous layer, forming a dopant profile region with a curved shape; depositing a layer of metal on the layer of semiconductor; melting the buried amorphous layer to reconfigure the curved shape to a substantially vertical profile of maximum dopant concentration; and forming silicide with the layer of semiconductor and layer of metal, the bottom of the silicide located in the vertical shape on the dopant profile region.
Abstract:
A method for making a ULSI MOSFET includes establishing a gate void in a field oxide layer above a silicon substrate, after source and drain regions with associated source and drain extensions have been established in the substrate. A gate electrode is deposited in the void and gate spacers are likewise deposited in the void on the sides of the gate electrode, such that the gate electrode is spaced from the walls of the void. The spacers, not the gate electrode, are located above the source/drain extensions, such that fringe coupling between the gate electrode and the source and drain extensions is suppressed.
Abstract:
The inventive method and apparatus provides improved semiconductor devices, such as MOSFET's with a delayed threshold voltage roll-off and short channel effects, making the semiconductor devices more tolerant of gate variations for short gate length devices. The invention provides a semiconductor device with an asymmetric channel doping profile. A first pocket dopant implantation with a 0° tilt is used to create a first source dopant pocket and a drain dopant pocket. A second pocket dopant implantation with a 30-60° tilt creates a second source dopant pocket without creating an additional drain dopant pocket, thus creating the asymmetric doping profile.
Abstract:
A field effect transistor is fabricated to have elevated drain and source contact structures with prevention of short-channel effects and leakage current which may result due to the formation of facetted surfaces on the elevated drain and source contact structures near the gate of the field effect transistor. The field effect transistor includes a drain extension implant, a source extension implant, a gate dielectric, a gate structure disposed over the gate dielectric, and a first spacer disposed on sidewalls of the gate dielectric and of the gate structure. An elevated drain contact structure is selectively grown on the drain extension implant and has a drain facetted surface facing toward the first spacer on the sidewall of the gate structure. Similarly, an elevated source contact structure is selectively grown on the source extension implant and has a source facetted surface facing toward the first spacer on the sidewall of the gate structure. A second spacer is formed to cover the drain facetted surface and the source facetted surface before dopant implantation into and silicide formation on the elevated drain and source contact structures. In this manner, the dopant is prevented from being implanted into the drain facetted surface and the source facetted surface such that short-channel effects are minimized in the field effect transistor of the present invention. In addition, formation of silicide on the drain facetted surface and the source facetted surface is prevented to minimize leakage current through the drain and source extension implants of the field effect transistor of the present invention.
Abstract:
A punch-through diode transient suppression device has a base region of varying doping concentration to improve leakage and clamping characteristics. The punch-through diode includes a first region comprising an n+ region, a second region comprising a p- region abutting the first region, a third region comprising a p+ region abutting the second region, and a fourth region comprising an n+ region abutting the third region. The peak dopant concentration of the n+ layers should be about 1.5E18 cm.sup.-3, the peak dopant concentration of the p+ layer should be between about 1 to about 5 times the peak concentration of the n+ layer, and the dopant concentration of the p- layer should be between about 0.5E14 cm.sup.-3 and about 1.OE17 cm.sup.-3. The junction depth of the fourth (n+) region should be greater than about 0.3 .mu.m. The thickness of the third (p+) region should be between about 0.3 .mu.m and about 2.0 .mu.m, and the thickness of the second (p-) region should be between about 0.5 .mu.m and about 5.0 .mu.m.
Abstract:
Disclosed are polyol premix compositions, and foams formed therefrom, which comprise a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a catalyst system that includes a bismuth-based metal catalyst. Such catalysts may be used alone or in combination with an amine catalyst and/or other non-amine catalysts.
Abstract:
A method for reporting channel state information is provided in the invention, which includes: an eNB (eNodeB) indicating UE to feed back CSI (channel state information) reporting of one or multiple component carriers at a time; the UE feeds back the CSI reporting of one or multiple component carriers at a time according to the indication of eNB. The invention also provides an eNB, which is configured to: indicate UE to feed back CSI reporting of one or multiple component carriers at a time. In the invention, the problem how the UE performs channel state information reporting for multiple (downlink) component carriers in the LTE-A system is solved, which can not only ensure the reliability of transmitting channel state information but also reduce the feedback delay of channel state information as soon as possible.
Abstract:
Sensors suitable for the sensing/detection of biological or chemical agents may be fabricated by immobilizing biological and/or chemical recognition components (selectors or probes) on a substrate by the polymerization of a suitable monomer in the presence of the selectors or probes, for example, by Polysiloxane Monolayer Immobilization (PMI). PMI may involve the polymerization of polysiloxane onto a substrate, onto which selector molecules are adsorbed or otherwise immobilized. The resulting immobilized selector molecule may then be used to interact with specific molecules (targets) within a mixture of molecules, thereby enabling those specific molecules to be detected and/or quantified.