Abstract:
A drive device is provided with a housing 11 and an electromagnetic clutch mechanism 14 accommodated in the housing. The electromagnetic clutch mechanism 14 is provided with an armature 41 rotatably supported in the housing 11, a rotor 42 arranged to face the armature 41 and rotatably supported in the housing 11, and a coil 46. An annular magnet 44 is fixed on the outer circumference surface of the rotor 42. A sensor 15 arranged inside the housing 11 detects a polarity change of the magnet 44 in association with rotation of the rotor 42. The magnet 44 is provided with an annular wall portion 44b extending toward the armature 41 beyond a surface on which the armature 41 is in contact with the rotor 42 with respect to the axial direction. The annular wall portion 44b is spaced radially outward from the armature 41. The annular wall portion 44b prevents abrasion powder produced on actuation of the electromagnetic clutch mechanism 14 from being scattered.
Abstract:
A brake-equipped retracting device (3) returns a liquid crystal display device (1) from a deployed position (1B) to a stored position (1A) using an elastic returning force of a spiral spring (18) that is wound up when the liquid crystal display device (1) is opened by the rotational force of a motor. A braking force for preventing the liquid crystal display device (1) from returning with too much force is applied to an input shaft (17a) of a reducer by having a rope (21) whose tensile force increases and decreases in relation to the opening and closing of the liquid crystal display device (1) be wound around a slip clutch (15) that is connected to the input shaft (17a). In emergency situations such as when the rope (21) breaks, a centrifugal grip (53) of a rotation-restraining mechanism (50) strikes an engagement notch surface (56b) on a fixed side, and the rotation of the input shaft (17a) is forcibly halted. A retracting device for a liquid crystal display device comprising a braking device that has a simple structure, is reliable, is highly safe, and is low in cost can be realized.
Abstract:
There is provided an active brake release device attached to the exterior of a door controller having a first electromagnet, in which a sliding portion can slide to activate a sliding bar when the first electromagnet is energized; a first and a second actuator, in which the first actuator is located to abut against the break release bar of the door controller, and a sliding pin of the first actuator is yieldingly biased in the anti-activation direction of the bar; and, the second actuator is limited by a limit means at a fixed position; a second electromagnet, which is used to release the second actuator when the second electromagnet is energized; and a circuit, which includes a limit-switch for switching on the first electromagnet upon resetting of the device and a capacitor which is used to temporarily supply power to the second electromagnet in an event of unexpected electricity failure. Thus, in the instant of unexpected electricity failure, the active brake release device will actively release the brake by a mechanical force, and shut off the safety door by sliding down with its own weight.
Abstract:
In order to reduce the stresses occurring during the closing of a manually closable body component, e.g. a door, a method of controlling the closing movement is proposed in which, during the closing movement, departing from an opened position, the body component passes through a first movement range in which the body component is moved towards the closed position without any action by a control member, and, following the first movement range, the body component passes through a second movement range in which the closing movement of the body component is varied in such a manner by the action of the control member that the residual kinetic energy of the body component does not exceed a predetermined limit value after passing through the second movement range, irrespective of the initial speed. The residual kinetic energy is not sufficient to close the body component automatically. The body component is therefore automatically drawn in a third movement range following the second movement range until a pre catch or main catch of a lock is reached.The invention relates furthermore to a corresponding control device.
Abstract:
A powered trunk closure assembly for a vehicle includes a linkage assembly attached at one end to a body bracket and at another end to a closure member bracket. A motor is linked with a gear train for actuating the linkage assembly. The motor and gear train are positioned exterior of the trunk.
Abstract:
A door operating apparatus includes a motor bracket that covers a driving shaft of a driving motor; an output shaft that is disposed from the motor bracket toward the supporting bracket so as to be orthogonal to an extending direction of the driving shaft; a first rotational element that is linked with the driving shaft, and disposed on the output shaft; a second rotational element that is linked with a door operating mechanism, and disposed between the first rotational element and the supporting bracket on the output shaft; and a clutch unit including a clutch driving section that supports a rotation of the output shaft. When the first rotational element and the second rotational element are engaged by driving of the clutch driving section, the door operating mechanism is actuated by the driving force.
Abstract:
An opening and closing member control apparatus for a vehicle includes a driving device adapted to drive an opening and closing member to open and close an opening portion formed at a vehicle body, a sensor provided at a connecting portion connecting the vehicle body with the opening and closing member, the sensor detecting an opening operation and a closing operation of the opening and closing member, and a drive controlling device controlling the driving device to drive the opening and closing member to open or close the opening portion by determining the opening operation or the closing operation of the opening and closing member based on a detection value of the sensor.
Abstract:
A brake-equipped retracting device (3) returns a liquid crystal display device (1) from a deployed position (1B) to a stored position (1A) using an elastic returning force of a spiral spring (18) that is wound up when the liquid crystal display device (1) is opened by the rotational force of a motor. A braking force for preventing the liquid crystal display device (1) from returning with too much force is applied to an input shaft (17a) of a reducer by having a rope (21) whose tensile force increases and decreases in relation to the opening and closing of the liquid crystal display device (1) be wound around a slip clutch (15) that is connected to the input shaft (17a). In emergency situations such as when the rope (21) breaks, a centrifugal grip (53) of a rotation-restraining mechanism (50) strikes an engagement notch surface (56b) on a fixed side, and the rotation of the input shaft (17a) is forcibly halted. A retracting device for a liquid crystal display device comprising a braking device that has a simple structure, is reliable, is highly safe, and is low in cost can be realized.
Abstract:
A sliding door system including a transom; at least one door leaf movable along the transom; an endless traction mechanism traction-resistantly connected to the at least one door leaf; a drive device for driving the endless traction mechanism, the drive device comprising a driven pulley guiding the endless traction mechanism; a rotational body torsion-resistantly connected to the driven pulley and rotatably supported by the transom, the rotational body comprises a coupling member; a locking bolt displaceably supported by the transom; and an electromechanical actuation device. The electromechanical actuation device is operable to cause the locking bolt to interlock with the coupling member of the rotational body to lock the at least one door leaf relative to the transom.
Abstract:
An active break release device driven by a second motor and externally attached to the door controller, which is used for the triggering of automatic brake releasing to close the safety door in unexpected electricity failure condition, in which the door controller have a housing for receiving a first motor, the driving torque of which is transferred through a rotary shaft to a reel for winding the door; a braking device is provided at the outside of said rotary shaft, which includes a braking portion normally located at a brake activating position, and located at a brake releasing position when the first motor is energized, characterized in that the active break release device comprises: at least a brake releasing rod, one end of which activates the braking portion to release braking by leverage action force, while the other end of which extending to the outside of the door controller; at least a second motor, provided externally at the door controller and moved together with the other end of the brake releasing rod; a circuit having a backup power source used to temporarily supply electricity to the second motor in case of unexpected electricity failure condition, so that the braking portion being driven to release braking. In this manner, the braking can be automatically released at the first instant of electricity failure so as to close the safety door.