Abstract:
A semimanufactured product of a stopper includes: a plate-shaped bridging portion; a first curved portion extending from one end portion of the bridging portion integrally; and a second curved portion extending from the other end portion of the bridging portion integrally, and an entirety of the semimanufactured product is formed in a C-shape. The first curved portion includes a first locking part at the end portion. The second curved portion includes a second locking part that engages with the first locking part at the end portion. The first locking part includes a convex-shaped convex portion and a pair of receiving portions positioned so as to sandwich the convex portion. The second locking part includes: a concave-shaped concave portion which can accommodate the convex portion; and a pair of projecting portions positioned so as to sandwich the concave portion.
Abstract:
A magnet plate used for a rotor core of a motor, includes a magnetic pole portion being set between an outer peripheral edge of a body portion and a magnet slot and having a radial width being smaller than a radial sectional width of the permanent magnet, and a higher hardness portion being formed into a hook shape along an end corner of the magnet slot and have a smaller width than the radial sectional width of the permanent magnet.
Abstract:
A hollow seamless pipe for a high-strength spring in the present invention includes a steel material in which chemical component compositions are properly adjusted, wherein a depth of a whole decarburized layer in an inner surface layer part is 100 μm or less, a depth of a flaw which is present in an inner surface is 40 μm or less, a width of the flaw is 60 μm or less, and a number density of a carbide which has a circle equivalent diameter of 500 nm or more and is present in the inner surface layer part is 1.8×10−2 particles/μm2 or less.
Abstract:
A vehicle seat comprising a seat main body including a seat cushion that supports buttocks and thighs of an occupant and a seatback that supports the upper body of the occupant; and a USB connector provided at the seat main body.
Abstract:
Provided is an indwelling member in a living body, the member being flexible and having sufficient strength. Also provided are a stent which is flexible and has sufficient strength, an embolization member which has a high embolization effect, a vasodilator kit, and an aneurysm embolization kit. An indwelling member in a living body of the invention is a double coil wound in coiling with a primary coil formed by winding a first wire of a metal in close coiling. The metallic wire has a diameter in the range of 14 μm to 200 μm, inclusive, and consists of a material selected from platinum, gold, palladium, tungsten, tantalum, cobalt, rhodium, titanium, alloys thereof, stainless steel, a nickel alloy, or a molybdenum alloy.
Abstract:
A vehicle seat includes a seat component member that has a frame member, a cushion material, and a support member arranged on the frame member. The support member includes a frame-shaped member having a polygonal shape that can be attached to the frame member, and a bag-shaped planar member that is attached to the frame-shaped member in a tensioned state to support the cushion material. The frame-shaped member can be accommodated in the bag-shaped planner member while at least one side of the frame-shaped member is at a contracted state. The frame-shaped member is maintained at an expanded state as the at least one side of the frame-shaped member is at a non-contracted state, such that the planner member is expanded from an inner side thereof and is maintained at the tensioned state.
Abstract:
Provided are a method for manufacturing a stabilizer and a heating device, the method being able to suppress the occurrence of unevenness in the hardness of a curved portion of a semimanufactured product of the stabilizer and reduce the process time in a tempering process. In electric heating in a first heating step (step A), the temperature of an inside portion of a shoulder can be steeply increased to a temperature (
Abstract:
A cutting jig cuts bonding material of a terminal joint between a magnetic head's slider and a flexure's wiring terminal. A base of the jig receives the slider. A blade moves along the base and faces a front side wall of the slider in a moving direction. An upright portion of the jig is formed on the base and has a stop face that faces a rear side wall of the slider in the moving direction. The blade moves toward the slider to come into contact with the bonding material, and is pressed to the front side wall of the slider. The bonding material is interposed in the moving direction while the rear side wall of the slider is brought into contact with and is stopped by the stop face when the slider is set on the base and the bonding material is cut.
Abstract:
An alloy material includes: a composition containing 17 at % to 25 at % of silver (Ag), 30 at % to 45 at % of palladium (Pd), and 30 at % to 53 at % of copper (Cu) in a composition range of a ternary alloy of Ag, Pd, and Cu; and at least one of manganese (Mn), tin (Sn), silicon (Si), antimony (Sb), titanium (Ti) and magnesium (Mg) added to the composition in a range of 4.5 at % or less, and the Mn in a range of 0.5 at % to 3.5 at %, the Sn in a range of 1 at % to 2 at %, the Si in a range of 0.5 at % to 2 at %, the Sb in a range of 0.5 at % to 3 at %, the Ti in a range of 0.5 at % to 2 at %, and the Mg in a range of 0.5 at % to 3.5 at % are added to the composition.
Abstract:
A stop mechanism of a helm device includes a rotation member, rotatable disks, fixed disks, and an electromagnet which presses these disks against one another. An inversion control pin is provided in a steering shaft. Slits are formed in a cylindrical portion. Both ends of the inversion control pin are inserted into the slits. The slits are shaped to be elongated in a circumferential direction of the cylindrical portion. A first pin receiving stopper wall is formed on one end of the slits. A second pin receiving stopper wall is formed on the other end of the slits. The inversion control pin can move within the range of inversion allowance angle between the pin receiving stopper walls.