摘要:
A lithium aluminum oxide (LiAlO2) substrate suitable for a zinc oxide (ZnO) buffer layer is found. The ZnO buffer layer is grown on the LiAlO2 substrate. Because the LiAlO2 substrate has a similar structure to that of the ZnO buffer layer, a quantum confined stark effect (QCSE) is effectively eliminated. And a photoelectrical device made with the present invention, like a light emitting diode, a piezoelectric material or a laser diode, thus obtains an enhanced light emitting efficiency.
摘要翻译:发现适用于氧化锌(ZnO)缓冲层的氧化锂铝(LiAlO 2 N 2)衬底。 ZnO缓冲层在LiAlO 2衬底上生长。 由于LiAlO 2衬底具有与ZnO缓冲层类似的结构,因此有效地消除了量子限制的Stark效应(QCSE)。 并且,通过本发明制造的光电器件,如发光二极管,压电材料或激光二极管,从而获得增强的发光效率。
摘要:
The invention provides a method of manufacturing a composite wafer structure. In particular, the method, according to the invention, is based on the fracture mechanics theory to actively control fracture induced during the manufacture of the composite wafer structure and to further protect from undesired edge damage. Thereby, the method, according to the invention, can enhance the yield rate of industrial mass production regarding the composite wafer structure.
摘要:
A solar cell wafer is provided. It is a silicon wafer, and a surface of the silicon wafer has a plurality of pores, wherein based on a total amount of 100% of the plurality of pores, 60% or more of the pores has a circularity greater than 0.5. Therefore, the reflectance of the solar cell wafer can be efficiently reduced.
摘要:
A poly-crystalline silicon ingot having a bottom and defining a vertical direction includes a plurality of silicon grains grown in the vertical direction, in which the plurality of the silicon grains have at least three crystal orientations; and a nucleation promotion layer comprising a plurality of chips and chunks of poly-crystalline silicon on the bottom, wherein the poly-crystalline silicon ingot has a defect density at a height ranging from about 150 mm to about 250 mm of the poly-crystalline silicon ingot that is less than 15%.
摘要:
A polycrystalline silicon column is provided. The polycrystalline silicon column includes a plurality of silicon grains grown along a crystal-growing direction. In the crystal-growing direction, the average grain size of the silicon grains and the resistivity of the polycrystalline silicon column have opposite variation in their trends, the average grain size of the silicon grains and the oxygen content of the polycrystalline silicon column have opposite variation in their trends, and the average grain size of the silicon grains and the defect area ratio of the polycrystalline silicon column have the same variation in their trends. The overall average defect area ratio of the polycrystalline silicon column is less than or equal to 2.5%.
摘要:
A method of fabricating a poly-crystalline silicon ingot includes: (a) loading a nucleation promotion layer onto a bottom of a mold; (b) providing a silicon source on the nucleation promotion layer in the mold; (c) heating the mold until the silicon source is melted into a silicon melt completely; (d) controlling at least one thermal control parameter regarding the silicon melt continually to enable the silicon melt to nucleate on the nucleation promotion layer such that a plurality of silicon grains grow in the vertical direction; (e) controlling the at least one thermal control parameter to enable the plurality of the silicon grains to continuously grow with an average grain size increasing progressively in the vertical direction until entirety of the silicon melt is solidified to obtain the poly-crystalline silicon ingot, wherein the nucleation promotion layer is loaded by spreading a plurality of mono-Si particles over the bottom of the mold.
摘要:
In a crystalline silicon formation apparatus, a quick cooling method is applied to the bottom of a crucible to control a growth orientation of a polycrystalline silicon grain, such that the crystal grain forms twin boundary, and the twin boundary is a symmetric grain boundary, and the crystal grain is solidified and grown upward in unidirection to form a complete polycrystalline silicon, such that defects or impurities will not form in the polycrystalline silicon easily.
摘要:
The invention discloses a seed used for crystalline silicon ingot casting. A seed according to a preferred embodiment of the invention includes a crystal and an impurity diffusion-resistant layer. The crystal is constituted by at least one grain. The impurity diffusion-resistant layer is formed to overlay an outer surface of the crystal. A crystalline silicon ingot fabricated by use of the seed of the invention has significantly reduced red zone and yellow zone.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
The invention discloses a method of fabricating a first substrate and a method of recycling a second substrate during fabrication of the first substrate. The second substrate is heterogeneous for the first substrate. First, the fabricating method according to the invention is to prepare the second substrate. Subsequently, the fabricating method is to deposit a buffer layer on the second substrate. Then, the fabricating method is to deposit a semiconductor material layer on the buffer layer. The buffer layer assists the epitaxial growth of the semiconductor material layer, and serves as a lift-off layer. Finally, with an etching solution, the fabricating method is to only etch the lift-off layer to debond the second substrate away from the semiconductor material layer, where the semiconductor material layer serves as the first substrate.