Abstract:
In a plasma reactor having an electrostatic chuck with an electrostatic chuck top surface for supporting a workpiece, thermal transfer medium flow channels in the interior of the electrostatic chuck, a method for controlling temperature of the workpiece during plasma processing includes circulating thermal transfer medium through the thermal transfer medium flow passages and supplying a thermally conductive gas between the workpiece and the electrostatic chuck top surface, and changing thermal transfer medium thermal conditions of thermal transfer medium flowing in the thermal transfer medium flow channels so as to change the temperature of the electrostatic chuck at a first rate limited by the thermal mass of the electrostatic chuck. The method further includes changing the backside gas pressure of the thermally conductive gas so as to change the temperature of the workpiece at a second rate faster than the first rate.
Abstract:
An apparatus for controlling thermal uniformity of a substrate-facing surface of a showerhead is provided herein. In some embodiments, the thermal uniformity of the substrate facing surface of the showerhead may be controlled to be more uniform. In some embodiments, the thermal uniformity of the substrate facing surface of the showerhead may be controlled to be non-uniform in a desired pattern. In some embodiments, an apparatus for controlling thermal uniformity of a substrate-facing surface of a showerhead may include a showerhead having a substrate facing surface and one or more plenums for providing one or more process gases through a plurality of gas distribution holes formed through the substrate facing surface of the showerhead; and a plurality of flow paths having a substantially equivalent fluid conductance disposed within the showerhead to flow a heat transfer fluid.
Abstract:
Embodiments of electrostatic chucks are provided herein. In some embodiments, an electrostatic chuck may include a body having a notched upper peripheral edge, defined by a first surface perpendicular to a body sidewall and a stepped second surface disposed between the first surface and a body upper surface, and a plurality of holes disposed through the body along the first surface; a plurality of fasteners disposed through the plurality of holes to couple the body to a base disposed beneath the body; a dielectric member disposed above the body upper surface to electrostatically retain a substrate; an insulator ring disposed about the body within the notched upper peripheral edge and having a stepped inner sidewall that mates with the stepped second surface to define a non-linear interface therebetween; and an edge ring disposed over the insulator ring, the non-linear interface limiting arcing between the edge ring and the fastener.
Abstract:
A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer evaporators inside respective inner and outer zones of the electrostatic chuck and a refrigeration loop having respective inner and cuter expansion valves for controlling flow of coolant through the inner and outer evaporators respectively. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively. Inner and outer zone agile control processors coupled to the thermal model govern the inner and outer zone backside gas pressure sources, respectively, in response to predictions from the model of changes in the respective pressures that would bring the temperatures measured by the inner and outer zone sensors, respectively, closer to a desired temperature.
Abstract:
An apparatus for generating uniform plasma across and beyond the peripheral edge of a substrate has a dielectric body with an upper electrode and an annular electrode embedded therein. The outer perimeter of the upper electrode overlaps the inner perimeter of the annular electrode. In one embodiment, the upper electrode and the annular electrode are electrically coupled by molybdenum vias. In one embodiment, the upper electrode is coupled to a DC power source to provide electrostatic force for chucking the substrate. In one embodiment, the upper electrode is coupled to an RF source for exciting one or more processing gasses into plasma for substrate processing.
Abstract:
A method of processing a workpiece in a chamber of a plasma reactor having a set of plural electromagnet coils includes selecting plural predetermined plasma density distributions relative to a workpiece surface, the predetermined plasma density distributions corresponding to different sets of D.C. currents in the coils, and flowing a process gas into the chamber and generating a plasma in the chamber. The method further includes switching plasma in the chamber between the predetermined plasma density distributions by switching D.C. currents through the coils between the different sets of D.C. currents.
Abstract:
A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
Abstract:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
Abstract:
An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
Abstract:
Apparatus for processing a substrate is disclosed herein. In some embodiments, a substrate support may include a substrate support having a support surface for supporting a substrate the substrate support having a central axis; a first electrode disposed within the substrate support to provide RF power to a substrate when disposed on the support surface; an inner conductor coupled to the first electrode about a center of a surface of the first electrode opposing the support surface, wherein the inner conductor is tubular and extends from the first electrode parallel to and about the central axis in a direction away from the support surface of the substrate support; an outer conductor disposed about the inner conductor; and an outer dielectric layer disposed between the inner and outer conductors, the outer dielectric layer electrically isolating the outer conductor from the inner conductor. The outer conductor may be coupled to electrical ground.