Abstract:
A method of fabricating a color filter that is adaptive for reducing an exposure process of the color filter. In the method, a material layer for forming the color filter in which a color changes in accordance with an exposed light quantity is formed on a transparent substrate. Three primary color filters are formed by differentiating the amount of exposed light on the material layer.
Abstract:
A PN sequence identifying device in a receiver in an asynchronous CDMA communication system. The receiver receives first OGCs on a primary sync channel and second OGCs on a secondary sync channel synchronized with the primary sync channel symbol by symbol. In the PN sequence identifying device, a first OGC detector detects the first OGCs and obtains a first symbol energy. A first synchronizer receives the first symbol energy, synchronizes chips, symbols, and slots, and outputs a first sync signal. A second OGC detector, upon reception of the first sync signal, detects the second OGCs each time the first sync signal is received, and obtains second symbol energies in base station identifying group units. A hopping pattern generator compares the first symbol energy with the second symbol energies, determines whether null signs are in the second OGCs, determines the order of the null signs if the null signs are present, and generates a hopping pattern of the second OGCs. A second synchronizer synchronizes frames based on the hopping pattern and outputs a second sync signal. A PN sequence generator receives the first and second signals and the hopping pattern and generates a PN sequence.
Abstract:
Disclosed herein are a lead-free solder alloy and a manufacturing method thereof. More specifically, disclosed are: a lead-free solder alloy, which comprises 0.8-1.2 wt % silver (Ag), 0.8-1.2 wt % copper (Cu), 0.01-1.0 wt % palladium (Pd), 0.001-0.1 wt % tellurium (Te), and a balance of tin (Sn), and thus has a melting point similar to those of prior lead-free solder alloys, excellent wettability, very low segregation ratio, and excellent weldability with a welding base metal, such that it improves temperature cycle performance and drop impact resistance simultaneously, when it is applied to electronic devices and printed circuit boards; a manufacturing method of the above alloy; and electronic devices and printed circuit boards which include the same.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes a substrate, a gate line along a first direction on the substrate, a data line along a second direction and crossing the gate line to define a pixel region, a common line on the substrate, a thin film transistor connected to the gate and data lines, a pixel electrode in the pixel region and connected to the thin film transistor, the pixel electrode including horizontal parts along the first direction, and a common electrode in the pixel region and connected to the common line, the common electrode including horizontal portions along the first direction, wherein the pixel electrode and the common electrode are formed on a same layer.
Abstract:
A liquid crystal display device includes first and second substrates; a gate line and a data line on the first substrate to define a unit pixel having first and second sub-pixel regions; first and second switching devices in the first and second sub-pixel regions; a plurality of first and second common electrodes in the first and second sub-pixel regions; a plurality of first and second pixel electrodes in the first and second sub-pixel regions; a common line shared by the unit pixel and an adjacent unit pixel; and a liquid crystal layer between the first and second substrates.
Abstract:
A method of fabricating an array substrate includes forming a buffer layer on a metal substrate, forming a thin film transistor including a gate electrode, a source electrode and a drain electrode on the buffer layer, forming a pixel electrode contacting the drain electrode, removing the metal substrate to expose a lower surface of the buffer layer, and forming a plastic material beneath the buffer layer such that the plastic material contacts the exposed lower surface of the buffer layer.
Abstract:
A method and apparatus for testing a liquid crystal display device are provided to detect a defect location precisely and rapidly without requiring a jig. The method includes providing an inspection apparatus as a removable portion of the liquid crystal display device; inspecting the display part of the liquid crystal display device using the inspection apparatus; removing the inspection apparatus from the liquid crystal display device after the inspection is completed; and attaching driving circuits to the liquid crystal display device having the inspection apparatus removed therefrom.
Abstract:
A semiconductor package includes a substrate having a plurality of through holes for interconnecting electrically conductive traces formed on upper and lower surfaces of the substrate. The through holes are classified into a first set of through holes and a second set of through holes. The second set of through holes is located exterior of the first set of through holes, and surrounds the first set of through holes. A die is mounted on the upper surface of the substrate and is connected electrically to the first set of through holes. A metal shield is disposed on the substrate for enclosing the die therein and is connected electrically to the second set of through holes. A molding resin encapsulates the metal shield, the die on the substrate and fills a gap confined between the metal shield and the die.
Abstract:
A key input apparatus and method includes a first key input unit, when any one of a plurality of keys of a first group is pressed, to output first data corresponding to the pressed key, a second key input unit, when any one of a plurality of keys of a second group is pressed, to output second data corresponding to the pressed key, and a key code generator to assign the first data and the second data to a certain row number and a certain column number, respectively, of a matrix and to generate a different key code corresponding to the row number and the column number of the matrix according to an order in which the first data and the second data are output, wherein the keys of the first group are different from the keys of the second group.
Abstract:
A liquid crystal display device includes an upper substrate, a lower substrate, a liquid crystal layer between the upper and lower substrates, a transparent electrode consisting of at least two layers of transparent material provided on at least one of the upper and lower substrates and a spacer material jetted onto the transparent electrode by an ink-jet system, wherein the spacer material has a hydrostatic property different from one of the at least two layers of the transparent electrode.