Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking
    32.
    发明申请
    Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking 审中-公开
    用于微加工和标记的Microchip-Yb光纤混合光放大器

    公开(公告)号:US20040036957A1

    公开(公告)日:2004-02-26

    申请号:US10645662

    申请日:2003-08-22

    Abstract: The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd:based lasers, especially Nd:YAG lasers. Particularly utility is disclosed for applications in the marking, micro-machining and drilling areas.

    Abstract translation: 本发明描述了用于控制高峰值功率脉冲的多模光纤放大的空间以及光束质量的技术,以及使用这种配置来替代当前二极管泵浦的基于钕的源。 通过适当的模式匹配光学和技术,可以通过激发多模光纤中的基模来确保完美的空间光束质量。 通过使用具有大包层直径的多模光纤,能够使沿着光纤长度的多模光纤中的空间光束质量损失最小化。 近衍射极限相干多模放大器可以方便地进行包层泵浦,从而产生高平均功率。 此外,通过实施具有应力产生区域或椭圆形光纤核心的多模光纤,可以保持多模光纤放大器中的偏振状态。这些激光器可用作Nd基激光器,尤其是Nd:YAG激光器的一般替代。 公开了用于标记,微加工和钻孔领域的应用。

    ULTRA-HIGH STABILITY BRILLOUIN LASER
    34.
    发明公开

    公开(公告)号:US20230318253A1

    公开(公告)日:2023-10-05

    申请号:US18177410

    申请日:2023-03-02

    Abstract: Example ultra narrow linewidth Brillouin lasers are disclosed that are pumped by pump lasers that are controlled via optimal control schemes in order to stabilize the Brillouin laser output frequency and minimize the Brillouin output linewidth. The control schemes are based on feedback loops to match the pump laser frequency to the optimum Stokes shift on the one hand and to line-narrow the pump laser linewidth on the other hand via comparing the linewidth of the pump laser with the linewidth of the Brillouin laser. The feedback loops in the control schemes can be partially or fully replaced with feedforward control schemes, allowing for larger bandwidth control. Provision for simultaneous oscillation of the Brillouin lasers on two polarization modes allows for further line-narrowing of the Brillouin output. The ultra-narrow linewidth Brillouin lasers can be advantageously implemented as pumps for microresonator based frequency combs, and can also be integrated to the chip scale and be constructed with minimal vibration sensitivity. The ultra-narrow linewidth Brillouin lasers can be widely tuned and a frequency readout can be provided via the use of a frequency comb. When phase locking a frequency comb to the Brillouin laser, ultra-stable microwave generation can be facilitated.

    COMPACT MICRORESONATOR FREQUENCY COMB

    公开(公告)号:US20210294180A1

    公开(公告)日:2021-09-23

    申请号:US17225012

    申请日:2021-04-07

    Abstract: Systems and methods for precision control of microresonator (MR) based frequency combs can implement optimized MR actuators or MR modulators to control long-term locking of carrier envelope offset frequency, repetition rate, or resonance offset frequency of the MR. MR modulators can also be used for amplitude noise control. MR parameters can be locked to external reference frequencies such as a continuous wave laser or a microwave reference. MR parameters can be selected to reduce cross talk between the MR parameters, facilitating long-term locking. The MR can be locked to an external two wavelength delayed self-heterodyne interferometer for low noise microwave generation. An MR-based frequency comb can be tuned by a substantial fraction or more of the free spectral range (FSR) via a feedback control system. Scanning MR frequency combs can be applied to dead-zone free spectroscopy, multi-wavelength LIDAR, high precision optical clocks, or low phase noise microwave sources.

    Utilization of time and spatial division multiplexing in high power ultrafast optical amplifiers

    公开(公告)号:US11121519B2

    公开(公告)日:2021-09-14

    申请号:US16218065

    申请日:2018-12-12

    Abstract: In an example amplifier system, an input pulse train is passed through an optical stage that splits each pulse into two or more pulses. These divided pulses are then injected into at least two amplifiers for amplification. The amplified pulses are subsequently passed back through the same optical stage in order to combine the pulses back into one high energy pulse. The amplifier system can use time division multiplexing (TDM) and/or spatial division multiplexing (SDM) to produce, e.g., four pulses in conjunction with two amplifiers and propagation through two optical beam splitters, which are coherently combined into a single output pulse after amplification. The amplifiers can comprise fiber amplifiers or bulk amplifiers.

    GOLD-PLATINUM ALLOY NANOPARTICLES IN COLLOIDAL SOLUTIONS AND BIOLOGICAL APPLICATIONS USING THE SAME

    公开(公告)号:US20190317103A1

    公开(公告)日:2019-10-17

    申请号:US16314499

    申请日:2017-07-26

    Abstract: Disclosed is a method of pulsed laser ablation production of gold-platinum AuxPt1-x alloy nanoparticles in a colloidal solution. The colloidal solution of AuxPt1-x alloy nanoparticles is suitable for many biological applications including lateral flow immunoassays and other bio-detections based on optical scattering. The nanoparticles form by fragmentation of the bulk material without evaporation, minimizing oxidation of the nanoparticles. The nanoparticles conjugate with bio-molecules such as protein, antibodies, peptides, RNA oligomers, DNA oligomers, other oligomers, or polymers effectively by passive adsorption. Advantageously the AuxPt1-x alloy nanoparticles have a wide optical extinction spectrum in the visible region, appearing nearly black in both colloidal and dried form. The nanoparticles can be used for labeling bio-molecules and provide a high visual contrast in visual-based bioassays. A combination of the near black color of the AuxPt1-x alloy nanoparticles with the red color of pure Au nanoparticles makes multiplexing bio-detection assays possible.

    All-fiber chirped pulse amplification systems

    公开(公告)号:US10096962B2

    公开(公告)日:2018-10-09

    申请号:US14716369

    申请日:2015-05-19

    Abstract: By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, a low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.

Patent Agency Ranking