Abstract:
A nonvolatile memory device and method thereof are provided. The example method may include applying a first bias voltage to a gate electrode, applying a second bias voltage to a substrate to obtain a first voltage potential difference between the gate electrode and the substrate and applying a third bias voltage to a first impurity region to obtain a second voltage potential difference between the substrate and the first impurity region, the first and third bias voltages being positive and the second bias voltage being negative. The example nonvolatile memory device may include a gate electrode receiving a first bias voltage, a substrate receiving a second bias voltage, the first and second bias voltages forming a first voltage potential difference between the gate electrode and the substrate and a first impurity region receiving a third bias voltage, the second and third bias voltages forming a second voltage potential difference between the first impurity region and the substrate, the first and third bias voltages being positive and the second bias voltage being negative.
Abstract:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
Abstract:
A nonvolatile memory cell array having common drain lines and method of operating the same are disclosed. A positive voltage is applied to a gate of a selected cell and gates of memory cells that share a word line with the selected cell. A first voltage is applied to a drain of the selected cell and drains of the memory cells that share at least a drain line with the selected cell. A second voltage is applied to a source of the selected cell and sources of memory cells that share a bit line with the selected cell, the second voltage being less than the first voltage, such that electrons are injected into the charge storage region of the selected cell to program. A third voltage, which is higher than the second voltage, is applied to bit lines that are not connected to the selected cell.
Abstract:
in methods of fabricating a non-volatile memory device having a local silicon-oxide-nitride-oxide-silicon (SONOS) gate structure, a semiconductor substrate having a cell transistor area, a high voltage transistor area, and a low voltage transistor area, is prepared. At least one memory storage pattern defining a cell gate insulating area on the semiconductor substrate within the cell transistor area is formed. An oxidation barrier layer is formed on the semiconductor substrate within the cell gate insulating area. A lower gate insulating layer is formed on the semiconductor substrate within the high voltage transistor area. A conformal upper insulating layer is formed on the memory storage pattern, the oxidation barrier layer, and the lower gate insulating layer. A low voltage gate insulating layer having a thickness which is less than a combined thickness of the upper insulating layer and the lower gate insulating layer is formed on the semiconductor substrate within the low voltage transistor area.
Abstract:
A non-volatile memory device having improved electrical characteristics and a method of fabricating the non-volatile memory device are provided. The non-volatile memory device includes a gate electrode, which is formed on a semiconductor substrate on which source and drain regions are formed, a trapping structure, which is interposed between the semiconductor substrate and the gate electrode and comprises an electron tunneling layer and a charge trapping layer, and an electron back-tunneling prevention layer, which is interposed between the gate electrode and the charge trapping layer, prevents electrons in the gate electrode from back-tunneling through the charge trapping layer, and is formed of a metal having a higher work function than the gate electrode.
Abstract:
A method of manufacturing a non-volatile semiconductor memory device begins by forming a dielectric layer pattern having an ONO composition on a substrate. A polysilicon layer is formed on the substrate including over the dielectric layer pattern. The polysilicon layer is patterned to form a split polysilicon layer pattern that exposes part of the dielectric layer pattern. The exposed dielectric layer is etched, and then impurities are implanted into portions of the substrate using the split polysilicon layer pattern as a mask to thereby form a source region having a vertical profile in the substrate.
Abstract:
A nonvolatile memory cell array having common drain lines and method of operating the same are disclosed. A positive voltage is applied to a gate of a selected cell and gates of memory cells that share a word line with the selected cell. A first voltage is applied to a drain of the selected cell and drains of the memory cells that share at least a drain line with the selected cell. A second voltage is applied to a source of the selected cell and sources of memory cells that share a bit line with the selected cell, the second voltage being less than the first voltage, such that electrons are injected into the charge storage region of the selected cell to program. A third voltage, which is higher than the second voltage, is applied to bit lines that are not connected to the selected cell.
Abstract:
A nonvolatile memory cell employing a plurality of dielectric nanoclusters and a method of fabricating the same are disclosed. In one embodiment, the nonvolatile memory cell comprises a semiconductor substrate having a channel region. A control gate is disposed above the channel region. A control gate dielectric layer is disposed between the channel region and the control gate. A plurality of dielectric nanoclusters are disposed between the channel region and the control gate dielectric layer. Each nanocluster may be separated from adjacent nanoclusters by the control gate dielectric layer. A tunnel oxide layer is disposed between the plurality of dielectric nanoclusters and the channel region. Further, a source and a drain are formed in the semiconductor substrate.
Abstract:
The present invention discloses a semiconductor device having a floating trap type nonvolatile memory cell and a method for manufacturing the same. The method includes providing a semiconductor substrate having a nonvolatile memory region, a first region, and a second region. A triple layer composed of a tunnel oxide layer, a charge storing layer and a first deposited oxide layer on the semiconductor substrate is formed sequentially. The triple layer on the semiconductor substrate except the nonvolatile memory region is then removed. A second deposited oxide layer is formed on an entire surface of the semiconductor substrate including the first and second regions from which the triple layer is removed. The second deposited oxide layer on the second region is removed, and a first thermal oxide layer is formed on the entire surface of the semiconductor substrate including the second region from which the second deposited oxide layer is removed. The semiconductor device can be manufactured according to the present invention to have a reduced processing time and a reduced change of impurity doping profile. The thickness of a blocking oxide layer and a high voltage gate oxide layer can be controlled.