Abstract:
Dislocation removal from a group III-V film grown on a semiconductor substrate is generally described. In one example, an apparatus includes a semiconductor substrate, a buffer film including a group III-V semiconductor material epitaxially coupled to the semiconductor substrate wherein the buffer film includes material melted by laser pulse irradiation and recrystallized to substantially remove dislocations or defects from the buffer film, and a first semiconductor film epitaxially grown on the buffer film wherein a lattice mismatch exists between the semiconductor substrate and the first semiconductor film.
Abstract:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
Abstract:
The present disclosure describes a method and apparatus for implementing a 3D (three dimensional) strained high mobility quantum well structure, and a 3D strained surface channel structure through a Ge confinement method. One exemplary apparatus may include a first graded SiGe fin on a Si substrate. The first graded SiGe fin may have a maximum Ge concentration greater than about 60%. A Ge quantum well may be on the first graded SiGe fin and a SiGe quantum well upper barrier layer may be on the Ge quantum well. The exemplary apparatus may further include a second graded SiGe fin on the Si substrate. The second graded SiGe fin may have a maximum Ge concentration less than about 40%. A Si active channel layer may be on the second graded SiGe fin. Other high mobility materials such as III-V semiconductors may be used as the active channel materials. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.
Abstract:
Reducing external resistance of a multi-gate device by incorporation of a partial metallic fin is generally described. In one example, an apparatus includes a semiconductor substrate and one or more fins of a multi-gate transistor device coupled with the semiconductor substrate, the one or more fins having a gate region, a source region, and a drain region, the gate region being disposed between the source and drain regions where the gate region of the one or more fins includes a semiconductor material and where the source and drain regions of the one or more fins include a metal portion and a semiconductor portion, the metal portion and the semiconductor portion being coupled together.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
In general, in one aspect, a method includes forming an n-diffusion fin and a p-diffusion fin in a semiconductor substrate. A high dielectric constant layer is formed over the substrate. A first work function metal layer is created over the n-diffusion fin and a second work function metal layer, thicker than the first, is created over the n-diffusion fin. A silicon germanium layer is formed over the first and second work function metal layers. A polysilicon layer is formed over the silicon germanium layer and is polished. The polysilicon layer over the first work function metal layer is thicker than the polysilicon layer over the second work function metal layer. A hard mask is patterned and used to etch the polysilicon layer and the silicon germanium layer to create gate stacks. The etch rate of the silicon germanium layer is faster over the first work function metal layer.
Abstract:
In general, in one aspect, a method includes using the Germanium nanowire as building block for high performance logic, memory and low dimensional quantum effect devices. The Germanium nanowire channel and the SiGe anchoring regions are formed simultaneously through preferential Si oxidation of epitaxial Silicon Germanium epi layer. The placement of the germanium nanowires is accomplished using a Si fin as a template and the germanium nanowire is held on Si substrate through SiGe anchors created by masking the two ends of the fins. High dielectric constant gate oxide and work function metals wrap around the Germanium nanowire for gate-all-around electrostatic channel on/off control, while the Germanium nanowire provides high carrier mobility in the transistor channel region. The germanium nanowire transistors enable high performance, low voltage (low power consumption) operation of logic and memory devices.
Abstract:
A method of fabricating a quantum well device includes forming a diffusion barrier on sides of a delta layer of a quantum well to confine dopants to the quantum well.
Abstract:
Embodiments of the invention include apparatuses and methods relating to directed carbon nanotube growth using a patterned layer. In some embodiments, the patterned layer includes an inhibitor material that directs the growth of carbon nanotubes.
Abstract:
A process for forming defect-free source and drain extensions for a MOSFET built on a germanium based channel region deposits a first silicon germanium layer on a semiconductor substrate, deposits a gate dielectric layer on the silicon germanium layer, and deposits a gate electrode layer on the gate dielectric layer. A dry etch chemistry etches those layers to form a gate electrode, a gate dielectric, and a silicon germanium channel region on the semiconductor substrate. Next, an ion implantation process forms halo implant regions that consume portions of the silicon germanium channel region and the semiconductor substrate. Finally, an in-situ doped epitaxial deposition process grows a pair of silicon germanium layers having LDD regions. The silicon germanium layers are adjacent to the silicon germanium channel region and the halo implant regions do not damage any portion of the silicon germanium layers.