Abstract:
A method of fabricating a nano/micro structure comprising the following steps is provided. First, a film is provided and then a mixed material comprising a plurality of particles and a filler among the particles is formed on the film. Next, the particles are removed by the etching process, the solvent extraction process or the like, such that a plurality of concaves is formed on the surface of the filler, which serves as a nano/micro structure of the film.
Abstract:
A light-emitting device comprises a light-emitting unit including a plurality of first connecting pads, a base substrate including a plurality of second connecting pads, and a plurality of conductive bumps that connect the first connecting pads of the light-emitting unit to the second connecting pads of the base substrate. In the manufacturing process, a reflow process is performed to bond the conductive bumps to the first and second connecting pads. The light-emitting unit is configured to emit a first light radiation upon the application of an electric current flow, and the base substrate is configured to emit a second light radiation when stimulated by the first light radiation.
Abstract:
A light-emitting device includes a multi-layer structure configured to emit a first light radiation, and a cap layer covering a surface area of the multi-layer structure while leaving exposed electrode areas defined thereon, wherein the cap layer is made of a material capable of emitting at least one second light radiation when stimulated by the first light radiation. The cap layer, being made of a material blend incorporating a passivation material and a luminescent material compound, is coated on the multi-layer structure.
Abstract:
According to a preferred embodiment of the present invention, there is provided a novel and optimal semiconductor light emitting device comprising a substrate, an n layer disposed co-extensively on the substrate, an n++ layer disposed non-extensively and flush on one side of the n layer. Furthermore, a p+ layer is disposed co-extensively on the n++ layer of the LED according to the invention, with a p layer further disposed co-extensively on the p+ layer. A p cladding layer is disposed co-extensively on the p layer. A multiple quantum well (MQW) layer is disposed co-extensively on the p cladding layer, and an n cladding layer is further disposed co-extensively on the MQW layer. A second n layer is disposed co-extensively on the n cladding layer. An n+ layer is disposed co-extensively on the second n layer of the LED according to the invention. After partially etching the device, an n electrode is formed opposite n++ layer non-extensively on the surface of n layer, and a second n electrode is formed non-extensively (without etching) upon the n+ layer.
Abstract:
A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.
Abstract:
A semiconductor element having a high breakdown voltage includes a substrate, a buffer layer, a semiconductor composite layer and a bias electrode. The buffer layer disposed on the substrate includes a high edge dislocation defect density area. The semiconductor composite layer disposed on the buffer layer includes a second high edge dislocation defect density area formed due to the first high edge dislocation defect density area. The bias electrode is disposed on the semiconductor composite layer. A virtual gate effect of defect energy level capturing electrons is generated due to the first and second high edge dislocation defect density areas, such that an extended depletion region expanded from the bias electrode is formed at the semiconductor composite layer. When the bias electrode receives a reverse bias, the extended depletion region reduces a leakage current and increases the breakdown voltage of the semiconductor element.
Abstract:
An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
Abstract:
A low-loss optical coupling apparatus includes a silicon-on-insulator wafer, a silicon dioxide layer, a taper waveguide, a channel waveguide and a thick-film silicon dioxide layer. The silicon-on-insulator wafer is formed with a silicon substrate. The silicon dioxide layer is provided on the silicon substrate. The taper waveguide comprises a slab region formed on the silicon dioxide layer and a waveguide region formed on the slab region. An end of a chip is connected to an end of the waveguide region. The channel waveguide is formed on the slab region and connected to another end of the waveguide region. The thick-film silicon dioxide layer extends on the taper waveguide and covers the entire waveguide region.
Abstract:
The present invention discloses an LED structure, wherein an N-type current spreading layer is interposed between N-type semiconductor layers to uniformly distribute current flowing through the N-type semiconductor layer. The N-type current spreading layer includes at least three sub-layers stacked in a sequence of from a lower band gap to a higher band gap, wherein the sub-layer having the lower band gap is near the substrate, and the sub-layer having the higher band gap is near the light emitting layer. Each sub-layer of the N-type current spreading layer is expressed by a general formula InxAlyGa(1-x-y)N, wherein 0≦x≦1, 0≦y≦1, and 0≦x+y≦1.
Abstract translation:本发明公开了一种LED结构,其中N型电流扩展层插入在N型半导体层之间以均匀地分布流过N型半导体层的电流。 N型电流扩展层包括从低带隙到较高带隙的顺序堆叠的至少三个子层,其中具有较低带隙的子层在衬底附近,并且子层 具有较高带隙的发光层靠近发光层。 N型电流扩展层的每个子层由通式In x Al y Ga(1-x-y)N表示,其中0≦̸ x≦̸ 1,0& nlE; y≦̸ 1和0≦̸ x + y≦̸
Abstract:
The present invention provides a method for fabricating a single-crystalline substrate containing gallium nitride (GaN) comprising the following steps. First, form a plurality of island containing GaN on a host substrate. Next, use the plurality of islands containing GaN as a mask to etch the substrate and form an uneven host substrate. Then, perform epitaxy on the uneven host substrate to make the islands containing GaN grow in size and merge into a continuous single-crystalline film containing GaN. Finally, separate the single-crystalline film containing GaN from the uneven host substrate to obtain the single-crystalline substrate containing GaN. According to the present invention, process time can be saved and yield can be improved.