Abstract:
A method for manufacturing heterostructures for applications in the fields of electronics, optics or opto-electronics. This method includes providing a silicon oxide layer with a thickness of less than or equal to 25 nanometers on one of a donor substrate or a receiver substrate or on both substrates, heat treating the substrate(s) that contains the silicon oxide layer at 900° C. to 1,200° C. under a neutral or reducing atmosphere that contains at least one of argon or hydrogen to form layer trapping through-holes inside the silicon oxide, bonding the substrates together at a bonding interface with the silicon oxide layer(s) positioned between them, reinforcing the bonding by annealing the substrates at 25° C. to 500° C. such that the trapping holes retaining gas species at the bonding interface, and transferring an active layer as a portion of the donor substrate onto the receiver substrate to obtain the heterostructure.
Abstract:
A process for the manufacture of a substrate having a top layer of a first material and an underlying layer of a second material whose lattice parameter is different from that of the first material. The process includes the steps of conducting an amorphization of the top layer to create an amorphous region in the top layer lying between an exposed surface and an amorphization interface, with that portion of the top layer below the interface being shielded from the amorphization and remaining as a crystalline structure; recrystallizing the amorphous region while also creating a network of defects at the interface, wherein the network forms a boundary for dislocations from the crystalline structure of the top layer, and containing the dislocations in the portion of the top layer that is located below the interface. Also, the substrates obtained by the method.
Abstract:
The invention relates to a of manufacturing a silicon dioxide layer of low roughness, that includes depositing a layer of silicon dioxide over a substrate by a low pressure chemical vapor deposition (LPCVD) process, the deposition process employing simultaneously a flow of tetraethylorthosilicate (TEOS) as the source material for the film deposition and a flow of a diluant gas that it not reactive with TEOS, so that the diluant gas/TEOS flow ratio is between 0.5 and 100; and annealing the silicon dioxide layer at a temperature between 600° C. and 1200° C., for a duration between 10 minutes and 6 hours.
Abstract:
The present invention relates to a method of treating a structure produced from semiconductor materials, wherein the structure includes a first and second substrates defining a common interface that has defects. The method includes forming a layer, called the disorganized layer, which includes the interface, in which at least a part of the crystal lattice is disorganized; and reorganizing the crystal lattice of the disorganized layer in order to force the defects back deeper into the first substrate.
Abstract:
A process for the manufacture of a substrate having a top layer of a first material and an underlying layer of a second material whose lattice parameter is different from that of the first material. The process includes the steps of conducting an amorphization of the top layer to create an amorphous region in the top layer lying between an exposed surface and an amorphization interface, with that portion of the top layer below the interface being shielded from the amorphization and remaining as a crystalline structure; recrystallizing the amorphous region while also creating a network of defects at the interface, wherein the network forms a boundary for dislocations from the crystalline structure of the top layer, and containing the dislocations in the portion of the top layer that is located below the interface. Also, the substrates obtained by the method.
Abstract:
The present invention relates to a method of manufacturing a wafer comprising a single crystalline bulk substrate of a first material and at least one epitaxial layer of a second material which has a lattice different from the lattice of the first material. The present invention provides a method for manufacturing a wafer in which a layer which is lattice-mismatched with the substrate can be grown on the substrate with a high effectiveness and high quality at a low cost. A roughening step is included for roughening the surface of the bulk substrate and a growing step is included for growing the second material on the rough surface with a reduced number of threading dislocations and an enhanced strain relaxation compared to a second material that is epitaxially grown on a polished surface.
Abstract:
This invention relates to a method for producing a substrate by transferring a layer of a material from a donor substrate to a support substrate, and then by removing a part of the layer of material to form the thin layer. The step of removing a part of the layer of material to form the thin layer comprises forming an amorphous layer in a part of the thin layer, and then recrystallizing the amorphous layer.
Abstract:
A method for self-supported transfer of a fine layer, in which at least one species of ions is implanted in a source-substrate at a specified depth in relation to the surface of the source-substrate. A stiffener is applied in intimate contact with the source-substrate and the source-substrate undergoes a heat treatment at a specified temperature during a specified period of time in order to create an embrittled buried area substantially at the specified depth without causing a thin layer, defined between the surface and the embrittled buried layer in relation to the remainder of the source-substrate, to become thermally detached. A controlled localized energy pulse is applied to the source-substrate in order to cause the self-supported detachment of the thin layer.
Abstract:
The invention relates to a of manufacturing a silicon dioxide layer of low roughness, that includes depositing a layer of silicon dioxide over a substrate by a low pressure chemical vapour deposition (LPCVD) process, the deposition process employing simultaneously a flow of tetraethylorthosilicate (TEOS) as the source material for the film deposition and a flow of a diluant gas that it not reactive with TEOS, so that the diluant gas/TEOS flow ratio is between 0.5 and 100; and annealing the silicon dioxide layer at a temperature between 600° C. and 1200° C., for a duration between 10 minutes and 6 hours.
Abstract:
The present invention relates to a method of manufacturing a wafer comprising a single crystalline bulk substrate of a first material and at least one epitaxial layer of a second material which has a lattice different from the lattice of the first material. The present invention provides a method for manufacturing a wafer in which a layer which is lattice-mismatched with the substrate can be grown on the substrate with a high effectiveness and high quality at a low cost. A roughening step is included for roughening the surface of the bulk substrate and a growing step is included for growing the second material on the rough surface with a reduced number of threading dislocations and an enhanced strain relaxation compared to a second material that is epitaxially grown on a polished surface.