Abstract:
Provided are a semiconductor device and a method of fabricating the same. The method may include forming an electrode structure including insulating layers and electrode layers alternatingly stacked on a substrate, forming a channel hole to penetrate the electrode structure, forming a data storage layer on a sidewall of the channel hole, and forming a semiconductor pattern on a sidewall of the data storage layer to be electrically connected to the substrate. The electrode layers may be metal-silicide layers, and the insulating layers and the electrode layers may be formed in an in-situ manner using the same deposition system.
Abstract:
Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
Abstract:
A method of fabricating a semiconductor device including forming a charge storage layer, and forming a first tunnel insulating layer covering the charge storage layer, the forming of the first tunnel insulating layer including heat treating the charge storage layer.
Abstract:
Provided are a semiconductor memory device and a fabricating method thereof. The device includes a stack including vertical channel structures that penetrate insulating patterns and gate electrodes that are alternately and repeatedly stacked on each other. Each of the gate electrodes includes first and second gate conductive layers. In a first region between an outer side of the stack and the vertical channel structures, the first gate conductive layer is adjacent to the vertical channel structures and includes a truncated end portion, the second gate conductive layer has a portion adjacent to the vertical channel structures and covered by a corresponding one of the first gate conductive layer and an opposite portion that is not covered with the first gate conductive layer. In a second region between the vertical channel structures, the first gate conductive layer may be extended to continuously cover surfaces of the second gate conductive layer.
Abstract:
Provided are a semiconductor memory device and a fabricating method thereof. The device includes a stack including vertical channel structures that penetrate insulating patterns and gate electrodes that are alternately and repeatedly stacked on each other. Each of the gate electrodes includes first and second gate conductive layers. In a first region between an outer side of the stack and the vertical channel structures, the first gate conductive layer is adjacent to the vertical channel structures and includes a truncated end portion, the second gate conductive layer has a portion adjacent to the vertical channel structures and covered by a corresponding one of the first gate conductive layer and an opposite portion that is not covered with the first gate conductive layer. In a second region between the vertical channel structures, the first gate conductive layer may be extended to continuously cover surfaces of the second gate conductive layer.
Abstract:
A semiconductor device includes a substrate, a first poly-silicon pattern on the substrate, a metal pattern on the first poly-silicon pattern, and an interface layer between the first poly-silicon pattern and the metal pattern. The interface layer may include at least one selected from the group of a metal-silicon oxynitride layer, a metal-silicon oxide layer, and a metal-silicon nitride layer.
Abstract:
A semiconductor device includes a substrate, a first poly-silicon pattern on the substrate, a metal pattern on the first poly-silicon pattern, and an interface layer between the first poly-silicon pattern and the metal pattern. The interface layer may include at least one selected from the group of a metal-silicon oxynitride layer, a metal-silicon oxide layer, and a metal-silicon nitride layer.
Abstract:
Semiconductor memory devices and methods of forming semiconductor memory devices are provided. The methods may include forming insulation layers and cell gate layers that are alternately stacked on a substrate, forming an opening by successively patterning through the cell gate layers and the insulation layers, and forming selectively conductive barriers on sidewalls of the cell gate layers in the opening.
Abstract:
Provided are a nonvolatile memory device and a method for fabricating the same. The nonvolatile memory device may include a stacked structure, a semiconductor pattern, an information storage layer, and a fixed charge layer. The stacked structure may be disposed over a semiconductor substrate. The stacked structure may include conductive patterns and interlayer dielectric patterns alternately stacked therein. The semiconductor pattern may be connected to the semiconductor substrate by passing through the stacked structure. The information storage layer may be disposed between the semiconductor pattern and the conductive patterns. The fixed charge layer may be disposed between the semiconductor pattern and the interlayer dielectric pattern. The fixed charge layer may include fixed charges. Electrical polarity of the fixed charges may be equal to electrical polarity of majority carriers of the semiconductor pattern.
Abstract:
Semiconductor memory devices and methods of forming semiconductor memory devices are provided. The methods may include forming insulation layers and cell gate layers that are alternately stacked on a substrate, forming an opening by successively patterning through the cell gate layers and the insulation layers, and forming selectively conductive barriers on sidewalls of the cell gate layers in the opening.