摘要:
Multiple logical partitions are provided access to a self-virtualizing input/output device of a data processing system via multiple dedicated partition adjunct instances. Access is established by: interfacing each logical partition to one or more associated partition adjunct instances, each partition adjunct instance coupling its associated logical partition to one of a virtual function or a queue pair of the self-virtualizing input/output device, and each partition adjunct instance being a separate dispatchable state and being created employing virtual address space donated from the respective logical partition or a hypervisor of the data processing system, and each partition adjunct instance including a device driver for the virtual function or queue pair of the self-virtualizing input/output device; and providing each logical partition with at least one virtual input/output which is interfaced through the logical partition's respective partition adjunct instance(s) to a virtual function or queue pair of the self-virtualizing input/output device.
摘要:
A wake-and-go mechanism is provided for a data processing system. When a thread is waiting for an event, rather than performing a series of get-and-compare sequences, the thread updates a wake-and-go array with a target address associated with the event. Software may save the state of the thread. The thread is then put to sleep. When the wake-and-go array snoops a kill at a given target address, logic associated with wake-and-go array may generate an exception, which may result in a switch to kernel mode, wherein the operating system performs some action before returning control to the originating process. In this case, the trap results in other software, such as the operating system or background sleeper thread, for example, to reload thread from thread state storage and to continue processing of the active threads on the processor.
摘要:
A hardware wake-and-go mechanism is provided for a data processing system. The wake-and-go mechanism looks ahead in a thread for programming idioms that indicates that the thread is waiting for an event. The wake-and-go mechanism performs a look-ahead polling operation for each of the programming idioms. If each of the look-ahead polling operations fails, then the wake-and-go mechanism updates a wake-and-go array with a target address associated with the event for each recognized programming idiom.
摘要:
Snoop response logic on a system bus is configured to detect on the system bus requests to access data at a target address with data exclusivity from at least one of a plurality of wake-and-go engines. The snoop response logic is further configured to determine a winning wake-and-go engine from the at least one wake-and-go engine that obtains a lock on the target address and generate a combined snoop response. The combined snoop response identifies the winning wake-and-go engine. The snoop response logic sends the combined snoop response to the at least one wake-and-go engine on the system bus. Each remaining wake-and-go engine within the at least one wake-and-go engine places an entry in its respective wake-and-go storage array to spin on a lock for the target address.
摘要:
A firmware update process for a self-virtualizing IO resource such as an SRIOV adapter is incorporated into a platform firmware update process to systematically update the resource firmware in a manner that is for the most part transparent to the logical partitions sharing the adapter. In particular, resource firmware associated with a self-virtualizing IO resource is bundled with firmware for at least one adjunct partition associated with that self-virtualizing IO resource within a common firmware image so that, upon restart of the adjunct partition to use the updated firmware image, the resource firmware is also updated, with a logical partition that uses the self-virtualizing IO resource maintained in an active state during the restart, and without requiring the self-virtualizing IO resource to be deconfigured from the logical partition.
摘要:
A partition adjunct is provided for a logical partition running above a hypervisor of a data processing system. The partition adjunct, which is a separate dispatchable partition from an instantiating logical partition, provides one or more services to the logical partition. A service request received from the logical partition is processed by the partition adjunct utilizing virtual address space donated to the partition adjunct from the logical partition. The partition adjunct and the logical partition share a common virtual address to real address page table, and context switching the current state machine from the logical partition to the partition adjunct occurs without invalidating or modifying state data of selected memory management and address translation hardware of the data processing system. In a hardware multithreaded system, the partition adjunct is dispatched on a single thread, while another thread continues to run in the logical partition initiating the service request.
摘要:
A mechanism is provided for directed resource folding for power management. The mechanism receives a set of static platform characteristics and a set of dynamic platform characteristics for a set of resources associated with the data processing system thereby forming characteristic information. The mechanism determines whether one or more conditions have been met for each resource in the set of resources using the characteristic information. Responsive to the one or more conditions being met, the mechanism performs a resource optimization to determine at least one of a first subset of resources in the set of resources to keep active and a second subset of resources in the set of resources to dynamically fold. Based on the resource optimization, the mechanism performs either a virtual resource optimization to optimally schedule the first subset of resources or a physical resource optimization to dynamically fold the second subset of resources.
摘要:
Accounting charges are assigned to workloads by measuring a relative use of computing resources by the workloads, then scaling the results using determined work-rate for the corresponding workload. Usage metrics for the individual resources may be selectable for the resources being measured and the work-rates may be determined from an analytical model or from empirical model that determines work-rates from an indication of processor throughput. Under single workload conditions on a platform, or other suitable conditions, a workload type may be used to select the particular usage metrics applied for the various resources.
摘要:
A wake-and-go mechanism is provided for a data processing system. The wake-and-go mechanism is configured to issue a look-ahead load command on a system bus to read a data value from a target address and perform a comparison operation to determine whether the data value at the target address indicates that an event for which a thread is waiting has occurred. In response to the comparison resulting in a determination that the event has not occurred, the wake-and-go engine populates the wake-and-go storage array with the target address and snoops the target address on the system bus.
摘要:
A remote update programming idiom accelerator identifies a remote update programming idiom in an instruction sequence of a thread running on a processing unit of a data processing system. The remote update programming idiom includes a read operation for reading data from a storage location at a remote node, at least one update operation for performing an update operation on the data to form result data, and a write operation for writing the result data to the storage location at the remote node. The remote update programming idiom accelerator transmits the remote update programming idiom to a remote node to perform an operation on data at the remote node. A remote update programming idiom accelerator at the remote node receives the remote update programming idiom and performs the update as a local operation.