摘要:
A firmware update process for a self-virtualizing IO resource such as an SRIOV adapter is incorporated into a platform firmware update process to systematically update the resource firmware in a manner that is for the most part transparent to the logical partitions sharing the adapter. In particular, resource firmware associated with a self-virtualizing IO resource is bundled with firmware for at least one adjunct partition associated with that self-virtualizing IO resource within a common firmware image so that, upon restart of the adjunct partition to use the updated firmware image, the resource firmware is also updated, with a logical partition that uses the self-virtualizing IO resource maintained in an active state during the restart, and without requiring the self-virtualizing IO resource to be deconfigured from the logical partition.
摘要:
A firmware update process for a self-virtualizing IO resource such as an SRIOV adapter is incorporated into a platform firmware update process to systematically update the resource firmware in a manner that is for the most part transparent to the logical partitions sharing the adapter. In particular, resource firmware associated with a self-virtualizing IO resource is bundled with firmware for at least one adjunct partition associated with that self-virtualizing IO resource within a common firmware image so that, upon restart of the adjunct partition to use the updated firmware image, the resource firmware is also updated, with a logical partition that uses the self-virtualizing IO resource maintained in an active state during the restart, and without requiring the self-virtualizing IO resource to be deconfigured from the logical partition.
摘要:
Multiple logical partitions are provided access to a self-virtualizing input/output device of a data processing system via multiple dedicated partition adjunct instances. Access is established by: interfacing each logical partition to one or more associated partition adjunct instances, each partition adjunct instance coupling its associated logical partition to one of a virtual function or a queue pair of the self-virtualizing input/output device, and each partition adjunct instance being a separate dispatchable state and being created employing virtual address space donated from the respective logical partition or a hypervisor of the data processing system, and each partition adjunct instance including a device driver for the virtual function or queue pair of the self-virtualizing input/output device; and providing each logical partition with at least one virtual input/output which is interfaced through the logical partition's respective partition adjunct instance(s) to a virtual function or queue pair of the self-virtualizing input/output device.
摘要:
Controlled partition shut-down is provided within a shared memory partition data processing system including a shared memory partition, a paging service partition, a hypervisor and a shared memory pool within physical memory. The hypervisor manages access to logical pages within the pool and page-out of pages from the pool to external paging storage via the paging service partition. A respective paging service stream exists between the paging service partition and hypervisor for each shared memory partition, with each stream including a stream state. The control method includes: responsive to a shut-down initiating event, notifying the paging service partition to shut down, and determining whether a shared memory partition is currently active, and if so, signaling the hypervisor to complete paging activity for the active memory partition and waiting for its stream state to enter a suspended or a completed state before automatically shutting down the paging service partition.
摘要:
Controlled partition shut-down is provided within a shared memory partition data processing system including a shared memory partition, a paging service partition, a hypervisor and a shared memory pool within physical memory. The hypervisor manages access to logical pages within the pool and page-out of pages from the pool to external paging storage via the paging service partition. A respective paging service stream exists between the paging service partition and hypervisor for each shared memory partition, with each stream including a stream state. The control method includes: responsive to a shut-down initiating event, notifying the paging service partition to shut down, and determining whether a shared memory partition is currently active, and if so, signaling the hypervisor to complete paging activity for the active memory partition and waiting for its stream state to enter a suspended or a completed state before automatically shutting down the paging service partition.
摘要:
Mechanisms are provided, in a data processing system having a processor and a transactional memory, for executing a transaction in the data processing system. These mechanisms execute a transaction comprising one or more instructions that modify at least a portion of the transactional memory. The transaction is suspended in response to a transaction suspend instruction being executed by the processor. A suspended block of code is executed in a non-transactional manner while the transaction is suspended. A determination is made as to whether an interrupt occurs while the transaction is suspended. In response to an interrupt occurring while the transaction is suspended, a transaction abort operation is delayed until after the transaction suspension is discontinued.
摘要:
A mechanism is provided in a logically partitioned data processing system for controlling depth and latency of exit of a virtual processor's idle state. A virtualization layer generates a cede latency setting information (CLSI) data. Responsive to booting a logical partition, the virtualization layer communicates the CLSI data to an operating system (OS) of the logical partition. The OS determines, based on the CLSI data, a particular idle state of a virtual processor under a control of the OS. Responsive to the OS calling the virtualization layer, the OS communicates the particular idle state of the virtual processor to the virtualization layer for assigning the particular idle state and wake-up characteristics to the virtual processor.
摘要:
A method, system and computer-usable medium are disclosed for managing power consumption in information processing systems. Processing resources are successively folded, allowing them to be placed into deeper and deeper power saving states while maintaining the ability to respond to new processing loads without exposing the latency of the deeper power saving states as they are unfolded. Before a deeper power saving state can be used, there must be sufficient processing resources in the prior power saving state to mask the latency of bringing a processing resource out of the deeper power saving state.
摘要:
A mechanism is provided for directed resource folding for power management. The mechanism receives a set of static platform characteristics and a set of dynamic platform characteristics for a set of resources associated with the data processing system thereby forming characteristic information. The mechanism determines whether one or more conditions have been met for each resource in the set of resources using the characteristic information. Responsive to the one or more conditions being met, the mechanism performs a resource optimization to determine at least one of a first subset of resources in the set of resources to keep active and a second subset of resources in the set of resources to dynamically fold. Based on the resource optimization, the mechanism performs either a virtual resource optimization to optimally schedule the first subset of resources or a physical resource optimization to dynamically fold the second subset of resources.
摘要:
Accounting charges are assigned to workloads by measuring a relative use of computing resources by the workloads, then scaling the results using determined work-rate for the corresponding workload. Usage metrics for the individual resources may be selectable for the resources being measured and the work-rates may be determined from an analytical model or from empirical model that determines work-rates from an indication of processor throughput. Under single workload conditions on a platform, or other suitable conditions, a workload type may be used to select the particular usage metrics applied for the various resources.