Abstract:
A conductive paste including a conductive powder, a metallic glass, and an organic vehicle, wherein the metallic glass has a resistivity that is decreased when the metallic glass is heat treated at a temperature that is higher than a glass transition temperature of the metallic glass.
Abstract:
Insulating impurities may be uniformly distributed over an entire or partial region of the phase change material. The PRAM may include a phase change layer including the phase change material. The insulating impurity content of the phase change material may be 0.1 to 10% (inclusive) the volume of the phase change material. The insulating impurity content of the phase change material may be adjusted by controlling the power applied to a target including the insulating impurities.
Abstract:
A fuel electrode material including a metal oxide having a perovskite type crystalline structure and represented by Formula 1: A1-xA′xB1-yB′yO3 Formula 1 wherein A and A′ are different from each other and A and A′ each independently include at least one element selected from the group consisting of strontium (Sr), yttrium (Y), samarium (Sm), lanthanum (La), and calcium (Ca); B includes at least one element selected from the group consisting of titanium (Ti), manganese (Mn), cobalt (Co), iron (Fe), and nickel (Ni); B′ is different from B and includes at least one transition metal; x is about 0.001 to about 0.08; and y is about 0.001 to about 0.5.
Abstract:
A thermoelectric material, and a thermoelectric element and a thermoelectric module including the thermoelectric material are disclosed. The thermoelectric material may have improved thermoelectric properties by irradiating the thermoelectric material with accelerated particles such as protons, neutrons, or ion beams. Thus, the thermoelectric material having excellent thermoelectric properties may be efficiently applied to various thermoelectric elements and thermoelectric modules.
Abstract:
A nano-composite, including: a plurality of secondary particles, each secondary particle including a mixture of nano-size primary particles, wherein the mixture of nano-size primary particles includes particles including a nickel oxide or a copper oxide, and particles including zirconia doped with a trivalent metal element or ceria doped with a trivalent metal element, and wherein the nano-size primary particles define a plurality of nano-pores.
Abstract:
A thermoelectric module includes; an upper substrate on which a plurality of upper electrodes having a plurality of first concave grooves formed therein are arranged, a lower substrate, on which a plurality of lower electrodes having a plurality of second concave grooves formed therein are arranged, and a least one spherical p-type thermoelectric element and at least one spherical n-type thermoelectric element interposed between the upper substrate and the lower substrate, and electrically and alternately in contact with the upper substrate and the lower substrate, wherein the at least one spherical p-type thermoelectric element and the at least one spherical n-type thermoelectric element are connected to the plurality of first concave grooves and the plurality of second concave grooves respectively disposed in the upper electrodes and the lower electrodes.
Abstract:
Disclosed is a negative electrode for a lithium sulfur battery. The negative electrode includes a lithium metal, a pre-treatment layer, and a protection layer for the lithium metal. The pre-treatment layer has a thickness of 50 to 5000 Å and includes a lithium ion conductive material with an ionic conductivity of at least 1×10−10 S/cm.
Abstract translation:公开了一种锂硫电池用负极。 负极包括锂金属,预处理层和用于锂金属的保护层。 预处理层具有50至5000的厚度,并且包括具有至少1×10 -6 S / cm 2的离子电导率的锂离子传导材料。
Abstract:
Disclosed is a rechargeable lithium polymer battery comprising a negative electrode including a negative active material layer deposited on a substrate, a positive electrode including a positive active material; and a polymer electrolyte including a lithium salt, an organic solvent, and a polymer.
Abstract:
Disclosed is a composition for protecting a negative electrode for a lithium metal battery including a multifunctional monomer having at least two double bonds for facilitating cross-linking, a plasticizer, and at least one alkali metal salt.
Abstract:
A thermoelectric material including: a bismuth-tellurium (Bi—Te)-based thermoelectric material matrix; and a nano-metal component distributed in the Bi—Te-based thermoelectric material matrix, wherein a Lotgering degree of orientation in a c-axis direction is about 0.9 to about 1.