Abstract:
A method and system for planarizing or polishing a substrate, particularly a memory or rigid disk, are provided. The method comprises abrading at least a portion of the surface with a polishing system comprising (i) a polishing composition comprising water, an oxidizing agent, and about 0.04 M or higher phosphate ion or phosphonate ion, and (ii) abrasive material. The present invention also provides a system for planarizing or polishing a substrate comprising (i) a polishing composition comprising water, an oxidizing agent, and about 0.04 M or higher phosphate ion or phosphonate ion, and (ii) silica particles.
Abstract:
The invention provides a system for polishing one or more layers of a multi-layer substrate that includes a first metal layer and a second layer comprising (i) a liquid carrier, (ii) at least one oxidizing agent, (iii) at least one polishing additive that increases the rate at which the system polishes at least one layer of the substrate, (iv) at least one stopping compound with a polishing selectivity of the first metal layer:second layer of at least about 30:1, and (v) a polishing pad and/or an abrasive. The invention also provides a composition comprising (i) a liquid carrier, (ii) at least one oxidizing agent, (iii) at least one polishing additive (iv) at least one stopping compound with a polishing selectivity of the first metal layer:second layer of at least about 30:1, to be used with (v) a polishing pad and/or an abrasive.
Abstract:
A composition and method are provided for cleaning contaminants from the surface of a semiconductor wafer after the wafer has been chemically-mechanically polished. The cleaning composition comprises a carboxylic acid, an amine-containing compound, a phosphonic acid, and water. The cleaning composition is useful in removing abrasive remnants as well as metal contaminants from the surface of a semiconductor wafer following chemical-mechanical polishing.
Abstract:
A method of planarizing or polishing the surface of a memory or rigid disk comprising abrading at least a portion of the surface with (i) a polishing composition comprising an oxidizing agent selected from the group consisting of persulfates and peroxides, an amino acid, and water, and (ii) an abrasive.
Abstract:
A method for planarizing or polishing a substrate, particularly a memory or rigid disk, is provided. The method comprises abrading at least a portion of a surface of a substrate with a polishing system comprising (i) a polishing composition comprising a liquid carrier, at least one oxidized halide, and at least one amino acid, and (ii) a polishing pad and/or an abrasive.
Abstract:
A chemical mechanical polishing slurry comprising an oxidizing agent, a complexing agent, an abrasive, and an optional surfactant, as well as a method for using the chemical mechanical polishing slurry to remove copper alloy, titanium, titanium nitride, tantalum and tantalum nitride containing layers from a substrate. The slurry does not include a separate film-forming agent.
Abstract:
A chemical mechanical polishing composition comprising an oxidizing agent and at least one solid catalyst, the composition being useful when combined with an abrasive or with an abrasive pad to remove multiple metal layers from a substrate.
Abstract:
A chemical mechanical polishing slurry precursor comprising urea, a second oxidizer, an organic acid, and an abrasive, and a method for using the chemical mechanical polishing slurry precursor to prepare a chemical mechanical polishing slurry with a first oxidizer and thereafter using the slurry to remove titanium, titanium nitride, and an aluminum alloy containing layers from a substrate.
Abstract:
A chemical mechanical polishing slurry comprising a film forming agent, urea hydrogen peroxide, a complexing agent, an abrasive, and an optional surfactant, as well as a method for using the chemical mechanical polishing slurry to remove copper alloy, titanium, and titanium nitride containing layers from a substrate.
Abstract:
The present invention provides a monolithic integrated lattice mismatched crystal template and a preparation method thereof by using low-viscosity material, the preparation method for the crystal template includes: providing a first crystal layer with a first lattice constant; growing a buffer layer on the first crystal layer; below the melting point of the buffer layer, growing a second crystal layer and a template layer by sequentially performing the growth process of a second crystal layer and the growth process of a first template layer on the buffer layer, or growing a template layer by directly performing a first template layer growth process on the buffer layer; melting and converting the buffer layer to an amorphous state, performing a second template layer growth process on the template layer grown by the first template layer growth process at the growth temperature above the glass transition temperature of the buffer layer, sequentially growing a template layer until the lattice of the template layer is fully relaxed. Compared to the prior art, the invention has advantages of simple preparation, achieving in various lattice constant material combinations on one substrate and low dislocation density, high crystal quality.