摘要:
Provided is a cathode mix for a lithium secondary battery, comprising a cathode active material, a conductive material and a binder, wherein the cathode mix uses a mixture of a flake-like carbon material (a), and a spherical chain-like carbon material (b) in a weight ratio (a/b) of 0.01 to 1 as the conductive material; and a lithium secondary battery comprising the same. Use of the conductive material according to the present invention can achieve simultaneous improvements in conductivity and loading density of the cathode mix, provide excellent discharge characteristics even with increased loading amounts of the cathode mix, and secure performance uniformity between the battery cells.
摘要:
Disclosed is a catalyst for a partial oxidation reforming reaction of fuel in the form of disk having through-hole. In addition, according to the invention, there is provided a fuel reforming apparatus and method using the catalyst. The catalyst for a partial oxidation reforming reaction of fuel according to the invention makes it possible to progress the partial oxidation reforming reaction of fuel smoothly, to improve the efficiency when reforming the fuel and to simplify the fuel reforming reactor. According to the fuel reforming apparatus and method, since the heat of reaction is efficiently controlled and used, a simple on-off operation, reduction of starting time and a stable operational condition are accomplished, which are indispensably required for a fuel reforming system in fuel cells, such as household, portable and car fuel cells.
摘要:
Disclosed is an electrode having a novel configuration for improving performance of the electrode used in solid-oxide fuel cells, sensors and solid state devices, in which the electrode providing electron conductivity is coated with ion conductive ceramic ceria film, enabling an electron conductive path and an ion conductive path to be independently and continuously maintained, and additionally extending a triple phase boundary where electrode/electrolyte/gas are in contact, and a method for manufacturing the same. The electrode is manufactured by coating the prefabricated electrode for use in a SOFC or sensor with a porous oxygen ion conductive ceramic ceria film by a sol-gel method, whereby the electron conductive material and ion conductive material exist independently, having a new microstructure configuration with a greatly extended triple phase boundary, thus improving electrode performance. Accordingly, such electrode does not require high cost equipment or starting materials, owing to the sol-gel method by which low temperature processes are possible. Moreover, the electrode microstructure can be controlled in an easy manner, realizing economic benefits, and the electrode/electrolyte interfacial resistance and electrode resistance can be effectively decreased, thereby improving performance of electrodes used in SOFCs, sensors and solid state devices.
摘要:
A mobile terminal and a method may be provided for controlling an operation of the mobile terminal. This may include displaying a first webpage on a display module, and if a second webpage is chosen to be displayed, determining whether the second webpage is provided by the same website that provides the first webpage. If the second webpage is provided by the same website that provides the first webpage, the first and second webpages may be merged into a third webpage and the third webpage may be displayed on the display module. Therefore, a plurality of webpages provided by a same webpage may be displayed at a same time by merging the webpages into a single webpage.
摘要:
Disclosed is a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, a cathode, an anode, a cathode frame channel and an anode frame channel, wherein at least one of the cathode frame channel and the anode frame channel is filled with a lithium source. Disclosed also are a method for producing the same, and a method for supplying a lithium source. The molten carbonate fuel cell in which a lithium source is supplied to an electrode has high mechanical strength and maintains stability of electrolyte to allow long-term operation.
摘要:
Disclosed is a membrane-electrode assembly (MEA) that prevents an electrolyte membrane from being damaged upon the fabrication of a single cell or a stack of fuel cells. The MEA further includes a guard gasket interposed between conventional gaskets, wherein the guard gasket has a thickness corresponding to 70%-95% of the thickness of the electrolyte membrane. The MEA ensures mechanical protection of the electrolyte membrane, and thus prevents the electrolyte membrane from being damaged by an excessive binding pressure upon the fabrication of a single cell or a stack of fuel cells. Furthermore, the contact resistance between the electrolyte membrane and the catalyst layer and the contact resistance between the gas diffusion layer and the catalyst layer can be minimized, thereby improving the quality of a fuel cell.
摘要:
Disclosed is a separator for a fuel cell made of a metal plate comprising both a cooling water flow field and a gas flow field formed on each surface thereof, wherein the separator consists of the joined metal plates for the cooling water flow fields to face each other, the surfaces of the joined metal plates are coated with TiN, a polymer electrolyte membrane fuel cell comprising the separator and a method for manufacturing the separator.
摘要:
A separation plate having a gas flow path is segmented for analyzing MEA performance without segmenting an electrode or a gas diffusion layer. In advance, a MEA is operated for a long time in a real stack environment using a typical separation plate which is not segmented, and then the segmented separation plate for analyzing MEA performance is mounted to the MEA.
摘要:
In a method for manufacturing Ni—Al alloy powders for electrode materials of fuel cells, in which, using aluminum chloride (AlCl3) as a catalyst, powders of Ni and Al, that have been used as electrode materials, are chemically reacted with each other to diffuse the Al into the Ni powders, so that Ni—Al alloy powders can be manufactured at a low temperature below fusion points of Ni and Al while maintaining a shape and a size of the existing Ni powders as they are, thus providing a manufacturing process of Ni—Al alloy powders that is simple, economical, compatible in working, and ready for scale-up, and in which a conventional manufacturing process of electrode based on Ni is used as it is, so that large sized electrode is manufactured.
摘要:
In a method for manufacturing Ni—Al alloy anode for fuel cells, in which, using nickel powders, Ni powders are mixed with Ni—Al alloy powders, which are hardly sintered in themselves, to assist a sintering of Ni—Al alloy, whereby Ni—Al alloy anode can be manufactured simply, economically and compatibly with mass production even by a conventional manufacturing process for an electrode.