Abstract:
A plasma display apparatus includes a heat radiation sheet that is easily attached and separated to and from a plasma display panel, has strengthened adherence with the plasma display panel and a chassis base, and does not generate a residual image. The plasma display apparatus includes a heat radiation sheet between a plasma display panel and a chassis base, and the heat radiation sheet is divided into two or more sheets, where the gap between the sheets is small enough so that a visible residual image does not appear.
Abstract:
Provided are designs for a plasma display module (PDM) that has a plasma display panel (PDP) and a chassis base with circuits mounted thereon. Heat dissipating layers and plane structures are formed between the PDP and the chassis base. The heat dissipating layer and the plane structure have novel shapes and sizes and are made out of specific materials or combinations of materials to improve the heat dissipating characteristics for the PDM. Preferably, a high-orientation graphite material having a high thermal conductivity is used for the heat dissipating layer. The plane structure is a highly conductive metal that is positioned between the graphite layer and the glass PDP to form a better contact to the PDP, to better draw heat away from the PDP and to allow for easy attachment and detachment of the graphite layer to the PDP.
Abstract:
A plasma display panel including a first panel, address electrodes formed on the first panel in a predetermined pattern, a first dielectric layer formed on the first panel and covering the address electrodes, a partition structure having unit partitions discontinuously formed on the first dielectric layer to partition a discharge space, the unit partitions being parallel to the address electrodes and each having auxiliary partitions, red, green and blue phosphor layers coated in the partitioned discharge space, a second panel, which is coupled to the first panel to form the discharge space and which is transparent, a plurality of pairs of sustaining electrodes formed on an inner surface of the second panel and having sets of first and second electrodes at a predetermined angle with respect to the address electrodes, and a second dielectric layer formed on the second panel and covering the sustaining electrodes.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A Light Emitting Diode (LED) driver apparatus and a method of driving an LED array are provided. A Light Emitting Diode (LED) driver apparatus includes: a DC-DC converter configured to supply a driving voltage to an LED array, a plurality of LED drivers configured to drive the LED array according to a dimming signal, in which the plurality of LED drivers are connected to one another in parallel to supply currents to the LED array.
Abstract:
A detecting circuit and method thereof are configured to detect whether an LED array is open is described. The detecting circuit includes a resistance unit, a first switching unit, and an output unit. The resistance unit is operatively connected in series to the LED array. The switching unit is configured to be turned on when a voltage of the resistance unit is greater than or equal to a predetermined voltage level. The output unit is configured to produce an output indicative of whether the LED array is open, based whether the first switching unit is turned on.
Abstract:
A Light Emitting Diode (LED) driver apparatus and a method of driving an LED array are provided. A Light Emitting Diode (LED) driver apparatus includes: a DC-DC converter configured to supply a driving voltage to an LED array, a plurality of LED drivers configured to drive the LED array according to a dimming signal, in which the plurality of LED drivers are connected to one another in parallel to supply currents to the LED array.
Abstract:
A plasma display according to an exemplary embodiment of the present invention applies different driving methods according to a maximum grayscale level of image data input for one field. When the maximum grayscale level of the field is higher than a reference level, an address period for selecting a light emitting cell and a non-light emitting cell from a plurality of discharge cells and a sustain period for sustain-discharging light emitting cells among the plurality of discharge cells are simultaneously driven in a plurality of sequential subfields after a first subfield. When the maximum grayscale level of the field is less than the reference level, the address period and the sustain period are time-separately driven in the plurality of subfields.
Abstract:
A display driving circuit is provided. The display driving circuit includes first to third voltage generation units configured to receive an externally applied input voltage having a same magnitude and generate respective voltages having different magnitudes, and a latch-up prevention unit connected to the second voltage generation unit and configured to receive a lower voltage among voltages output from the second voltage generation unit and to ground the lower voltage for a preset period of time.
Abstract:
A plasma display device includes a plasma display panel for displaying an image by a gas discharge. A chassis base is attached to the plasma display panel and supports the plasma display panel. At least one printed circuit board is mounted on the a side of the chassis base at opposite the side supporting the plasma display panel. At least one flexible printed circuit connects electrodes of the plasma display panel and terminals of the printed circuit boards. An anisotropic conductive film is between the terminal of the printed circuit board and a terminal of the flexible printed circuit and connects the terminal of the printed circuit board and the terminal of the flexible printed circuit. The printed circuit board includes at least one dummy groove outside a region of the printed circuit board facing the flexible printed circuit.