Abstract:
This disclosure is directed to an electronic identification card or electronic card having various features. The electronic card may include an integrated circuit and a contact plate for electrically interfacing with the integrated circuit. The contact plate may include an array of terminal electrodes that are offset with respect to the edges of the contact plate. The electronic card may be coated with a coating layer that extends at least partially over a ferromagnetic element or film. The electronic card may also include a metal substrate having exposed chamfer portions that may provide a visual contrast to the coating layer and also improve the handling and use of the electronic card.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
Embodiments are directed to laser-based processes for forming features on the surface of a part. The feature may include a geometric element, a color element, and/or a surface finish element. In some cases, the laser-formed features are formed as a pattern of textured features that produce an aesthetic and/or tactile effect on the surface of the part. In some cases, the texture features may be sufficiently small that they may not be discerned by the unaided human eye. Also, in some cases, a multiple laser-based processes are combined to form a single feature or a finished part having a specific aesthetic and/or tactile effect.
Abstract:
Described herein are methods of constructing a part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. Metallic glass meshes, metallic glass actuators, three dimensional metallic glass thermal history sensors, and methods of their manufacture are also disclosed.
Abstract:
Systems and techniques for laser-marking a fabric material. Some implementations may be directed to a fabric component having a surface dyed a first color using a pigment. The surface may be irradiated using a laser to form a lightened region. In some cases, the lightened region has a second color that is lighter than the first color. In some cases, the lightened region has fibers of the nylon fabric component that are fused to form a partially specular surface due to the laser irradiation. In some cases, the lightened region has fibers of the fabric component that are fused to form a partially specular surface. The fabric material may form a fabric component of a device or product. In some cases, the fabric forms a component of a keyboard or user-input device.
Abstract:
Systems and methods for producing a textured pattern on a surface of a part using a laser. The part or laser may be rotated while forming the textured pattern to create a continuous textured pattern on a surface of a part. The continuous textured pattern may be substantially uniform over the entire pattern. A laser texturing system may also include an optical scanner. A first region of the surface of the part may be scanned using a first laser beam. One or more laser texturing parameters or a simulated geometric model may be created based on the scan of the first region. The textured pattern may be formed on the first region using a second laser beam. The textured pattern may be formed in accordance with the one or more laser texturing parameters or simulated geometric model.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
Techniques or processes for providing markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface so as to be visible from the outside of the housing. The markings may be precisely formed using a laser. Processing may be used to increase reflectivity of the markings.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.
Abstract:
Techniques or processes for providing markings on products are disclosed. The markings provided on products can be textual and/or graphic. The techniques or processes can provide high resolution markings on surfaces that are flat or curved. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, the housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface. The markings can be formed using a ultra-violet (UV) curable material that can be selectively cured on a surface (e.g., housing surface) in places where markings, namely text and/or graphics, are to be provided.