Abstract:
A method for data storage includes storing data in a memory that includes one or more memory units, each memory unit including memory blocks. The stored data is compacted by copying at least a portion of the data from a first memory block to a second memory block, and subsequently erasing the first memory block. Upon detecting a failure in the second memory block after copying the portion of the data and before erasure of the first memory block, the portion of the data is recovered by reading the portion from the first memory block.
Abstract:
A method for data storage includes accepting data for storage in a memory that includes multiple analog memory cells and supports a set of built-in programming commands. Each of the programming commands programs a respective page, selected from a group of N pages, in a subset of the memory cells. The subset of the memory cells is programmed to store M pages of the data, M>N, by performing a sequence of the programming commands drawn only from the set.
Abstract:
A method includes accepting input including at least part of a codeword that has been encoded by an ECC defined by a set of parity check equations. The codeword includes data bits and parity bits. A decoding process is applied to the codeword using the data bits and only a first partial subset of parity bits in the input, and using only a second partial subset of equations. Upon a failure to decode the codeword using the partial subsets, the codeword is re-decoded using the data bits and all parity bits in the input, and using all equations. The set of parity check equations is defined such that any parity bit in the codeword appears in multiple equations, and any parity bit in the first partial subset of the parity bits appears in a plurality of equations in the second partial subset of the equations.
Abstract:
A method for data storage in a memory that includes multiple analog memory cells, includes defining, based on a characteristic of the memory cells, an uneven wear leveling scheme that programs and erases at least first and second subsets of the memory cells with respective different first and second Programming and Erasure (P/E) rates. Data is stored in the memory in accordance with the uneven wear leveling scheme.
Abstract:
A data storage method includes identifying, in a set of data items associated with respective logical addresses for storage in a memory, a first subset of the logical addresses associated with the data items containing application data, and a second subset of the logical addresses associated with the data items containing parity information that has been calculated over the application data. The data items associated with the first identified subset are stored in one or more first physical memory areas of the memory, and the data items associated with the second identified subset are stored in one or more second physical memory areas of the memory, different from the first physical memory areas. A memory management task is performed independently in the first physical memory areas and in the second physical memory areas.
Abstract:
A method for data storage includes defining, in a memory that includes multiple analog memory cells, an erased state, a set of non-erased programming states and a partial subset of the non-erased programming states. Data is initially stored in a first group of the analog memory cells by programming each of at least some of the memory cells in the first group from the erased state to a respective non-erased programming state selected from the set of non-erased programming states. After initially storing the data, a second group of the analog memory cells, which potentially cause interference to the first group, is programmed. After programming the second group, the first group is selectively re-programmed with the data by repeating programming of only the memory cells in the first group whose respective programming states belong to the partial subset.
Abstract:
A method includes storing data in a memory, which includes multiple strings of analog memory cells arranged in a three-dimensional (3-D) configuration having a first dimension associated with bit lines, a second dimension associated with word lines and a third dimension associated with sections, such that each string is associated with a respective bit line and a respective section and includes multiple memory cells that are connected to the respective word lines. For a group of the strings, respective values of a property of the strings in the group are evaluated. Source-side voltages are calculated for the respective strings in the group, depending on the respective values of the property, and respective source-sides of the strings in the group are biased with the corresponding source-side voltages. A memory operation is performed on the strings in the group while the strings are biased with the respective source-side voltages.
Abstract:
A method for operating a memory includes storing data in a plurality of analog memory cells that are fabricated on a first semiconductor die by writing input storage values to a group of the analog memory cells. After storing the data, multiple output storage values are read from each of the analog memory cells in the group using respective, different threshold sets of read thresholds, thus providing multiple output sets of the output storage values corresponding respectively to the threshold sets. The multiple output sets of the output storage values are preprocessed by circuitry that is fabricated on the first semiconductor die, to produce preprocessed data. The preprocessed data is provided to a memory controller, which is fabricated on a second semiconductor die that is different from the first semiconductor die. so as to enable the memory controller to reconstruct the data responsively to the preprocessed data.
Abstract:
A method for data storage includes defining a first programming scheme that programs a group of analog memory cells while reducing interference caused by at least one memory cell that neighbors the group, and a second programming scheme that programs the group of the analog memory cells and does not reduce all of the interference reduced by the first programming scheme. One of the first and second programming schemes is selected based on a criterion defined with respect to the analog memory cells. Data is stored in the group of the analog memory cells using the selected programming scheme.
Abstract:
A method for data storage includes storing data in a memory that includes one or more memory units, each memory unit including memory blocks. The stored data is compacted by copying at least a portion of the data from a first memory block to a second memory block, and subsequently erasing the first memory block. Upon detecting a failure in the second memory block after copying the portion of the data and before erasure of the first memory block, the portion of the data is recovered by reading the portion from the first memory block.