摘要:
The productivity of an IC card is to be improved. In a memory card of the type in which a memory body having a wiring substrate and a semiconductor chip mounted on a main surface of the wiring substrate is held so as to be sandwiched in between a first case and a second case, a planar outline of the memory body is smaller than half of a planar outline of the memory card. The memory body is disposed so as to be positioned closer to a first end side as one short side of the memory card with respect to a midline between the first end side and a second end side as an opposite short side of the memory card positioned on the side opposite to the first end side. The other area than the memory body-disposed area in the first and the second case is used as another functional area.
摘要:
The present invention is intended to provide an apparatus for screening protein crystallization conditions that can screen protein crystallization conditions efficiently by the vapor diffusion method using the sitting drop technique. In order to achieve the above-mentioned object, in an apparatus for screening protein crystallization conditions that screens protein crystallization conditions using the sitting drop technique that is one of the techniques of protein crystallization to be carried out by the vapor diffusion method, an apparatus 2 for preparing a crystallization plate that includes a dispensing means for dispensing a protein solution and a crystallization solution in wells of the crystallization plate and a seal attachment unit that seals the wells that have been subjected to dispensation is connected to a protein crystal detection apparatus 5 that detects protein crystals produced in the crystallization plate in a thermostatic chamber that stores the crystallization plate that has been subjected to the dispensing in a predetermined environment. Accordingly, the crystallization plate is transferred automatically and thus screening is carried out efficiently and automatically.
摘要:
In a microplate processing apparatus that removes lid (11) of microplate (10) conveyed by microplate conveying mechanism (3) to perform a dispensing process by dispensing head (8), and that attaches lid (11) after the dispensing process is completed, lid (11) removed by lid removing mechanism (6) at first position (P1) is conveyed to third position (P3) located downstream, by microplate conveying mechanism (3), to be held by lid attaching mechanism (9), and then lid (11) is attached to microplate (10) having been conveyed to third position (P3), after the dispensing process is completed, while microplate (10) with this lid (11) having been attached is being lifted to processing position (P4) above microplate conveying mechanism (3), by microplate stage (12).
摘要:
A reflection reduction optical system comprises a first convex reflective surface R.sub.1, a second reflective surface R.sub.2, a third convex reflective surface R.sub.3, and a fourth concave reflective surface R.sub.4 to reflect light rays from an object surface. The third convex reflective surface R.sub.3 and the fourth concave reflective surface R.sub.4 are concentrically disposed. At least one of the object surface O and an image surface I is of concave sphere with respect to the reduction projection optical system. For practical use, the object surface is formed in a concave sphere with respect to the reduction projection optical system and the image plane in a plane perpendicular to the optical axis. A mask of concave sphere, which is the object surface O, is rotated during light exposure about a center of curvature C.sub.0 thereof located on the optical axis. A synchronous scan of wafer surface as being as the image surface I is carried out in a direction perpendicular to the optical axis in synchronism with the rotation of mask.
摘要:
A reflecting imaging optical apparatus comprises a reflecting spherical optical system including a first spherical reflecting optical system and a second spherical reflecting optical system, and a spherical reflecting mirror disposed near the position of an intermediate image formed by the reflecting spherical optical system. The first and second spherical reflecting optical systems form concentric optical systems, respectively.
摘要:
A silicon single-crystal growing method is disclosed which immerses a seed crystal in a silicon melt and pulls the seed crystal from the melt to thereby grow a silicon single-crystal, and in which the dwelling time of the silicon single-crystal, which is being pulled in a temperature range of between 1,050.degree. to 850.degree. C., is set to be no longer than 140 min. The apparatus suitable for practicing the above method has a crucible, a pulling mechanism, and a temperature control shell. The temperature control shell is located above the crucible for cooling said silicon single-crystal at a cooling rate such that the dwelling time of said silicon single-crystal, which is being pulled in a temperature range of between 1,050.degree. to 850.degree. C., is not longer than 140 min.
摘要:
When light is incident to an antenna layer AA6 of a photocathode AA1, light of a specific wavelength included in the incident light couples with surface plasmons in the antenna layer AA6 whereupon near-field light is outputted from a through hole AA14. The intensity of the output near-field light is proportional to and greater than the intensity of the light of the specific wavelength. The output near-field light has a wavelength that can be absorbed in a photoelectric conversion layer AA4. The photoelectric conversion layer AA4 receives the near-field light outputted from the through hole AA14. A region of the photoelectric conversion layer AA4 around the through hole AA14 absorbs the near-field light and generates photoelectrons (e−) in an amount according to the intensity of the near-field light. The photoelectrons (e−) generated in the photoelectric conversion layer AA4 are outputted to the outside.
摘要:
When light is incident to an antenna layer AA6 of a photocathode AA1, light of a specific wavelength included in the incident light couples with surface plasmons in the antenna layer AA6 whereupon near-field light is outputted from a through hole AA14. The intensity of the output near-field light is proportional to and greater than the intensity of the light of the specific wavelength. The output near-field light has a wavelength that can be absorbed in a photoelectric conversion layer AA4. The photoelectric conversion layer AA4 receives the near-field light outputted from the through hole AA14. A region of the photoelectric conversion layer AA4 around the through hole AA14 absorbs the near-field light and generates photoelectrons (e−) in an amount according to the intensity of the near-field light. The photoelectrons (e−) generated in the photoelectric conversion layer AA4 are outputted to the outside.
摘要:
In a micro-liquid transfer apparatus including two washing tanks (first washing tanks A and B), operations to transfer a sample are carried out using two pin tools (pin tools A and B) alternately. While one pin tool A is being mounted on a pin tool holder and is being used to transfer a liquid, the other pin tool B is waiting in a state where the lower end portions of their associated pins are immersed in the first washing tank B. While one pin tool A is being mounted on a pin tool holder and is being used to transfer a very small amount of liquid, the lower end portions of the respective pins of the other pin tool are washed, whereby the liquid transfer operations can be made in progress with no interruption and thus the generation of the operation waiting time can be prevented.
摘要:
A multifunction card device has an external connection terminal, an interface controller, a memory, and the security controller connected to the interface controller and the external connection terminal. The interface controller has a plurality of interface control modes, and controls an external-interface action and a memory interface action by the control mode according to the instruction from the outside. The external connection terminals have an individual terminal individualized for every interface control mode, and a communalized common terminal. A clock input terminal, a power supply terminal, and an earthing terminal are included in the common terminals. A data terminal, and a dedicated terminal of the security controller are included in the individual terminals. Partial communalization and individualization of an external connection terminal attain a guarantee of the reliability of an interface, and increase control of physical magnitude to some kinds of interface control modes. The security process by a security controller independent interface can also be guaranteed.