Abstract:
A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
Abstract:
In one aspect, the disclosure is directed to a MEMS device. The MEMS device includes a silicon-based movable MEMS sensor element. The MEMS device also includes a plurality of wells formed into at least one surface of the movable MEMS sensor element. Each well is filled with at least one metal so as to increase the effective mass of the movable MEMS sensor element. The metal may be tungsten or tantalum, or an alloy with tungsten or tantalum.
Abstract:
A single-axis tilt-mode microelectromechanical accelerometer structure. The structure includes a substrate having a top surface defined by a first end and a second end. Coupled to the substrate is a first asymmetrically-shaped mass suspended above the substrate pivotable about a first pivot point on the substrate between the first end and the second end and a second asymmetrically-shaped mass suspended above the substrate pivotable about a second pivot point on the substrate between the first end and the second end. The structure also includes a first set of electrodes positioned on the substrate and below the first asymmetrically-shaped mass and a second set of electrodes positioned on the substrate and below the second asymmetrically-shaped mass.
Abstract:
Gyroscopes with electrodes for tuning cross-axis sensitivity are disclosed. In certain embodiments, a MEMS gyroscope includes a resonator mass that moves in a first direction (for instance, x-direction), a sensing structure that detects a Coriolis effect in a second direction (for instance, y-direction), and a plurality of electrodes that control a cross-axis stiffness of the MEMS gyroscope by controlling motion of the resonator mass in a third direction (for instance, z-direction). For example, the electrodes can be used to reduce or eliminate cross-axis sensitivity arising from cross-axis stiffnesses, such as kxz (resonator-to-orthogonal) and/or kyz (Coriolis-to-orthogonal).
Abstract:
Compact packages including microelectromechanical system (MEMS) devices and multiple application specific integrated circuits (ASICs) are described. These packages are sufficiently small to be applicable to contexts in which space requirements are particularly strict, such as in consumer electronics. These packages involve vertical die stacks. A first ASIC may be positioned on one side of the die stack and another ASIC may be positioned on the other side of the die stack. A die including a MEMS device (e.g., an accelerometer, gyroscope, switch, resonator, optical device) is positioned between the ASICs. Optionally, an interposer serving as cap substrate for the MEMS device is also positioned between the ASICs. In one example, a package of the types described herein has an extension of 2 mm×2 mm in the planar axes and less than 500-800 μm in height.
Abstract:
Described herein are manufacturing techniques for achieving stress isolation in microelectromechanical systems (MEMS) devices that involve isolation trenches formed from the backside of the substrate. The techniques described herein involve etching a trench in the bottom side of the substrate subsequent to forming a MEMS platform, and processing the MEMS platform to form a MEMS device on the top side of the substrate subsequent to etching the trench.
Abstract:
A stress-isolated microelectromechanical systems (MEMS) device and a method of manufacture of the stress-isolated MEMS device are provided. MEMS devices may be sensitive to stress and may provide lower performance when subjected to stress. A stress-isolated MEMS device may be manufactured by etching a trench and/or a cavity in a first side of a substrate and subsequently forming a MEMS device on a surface of a platform opposite the first side of the substrate. Such a stress-isolated MEMS device may exhibit better performance than a MEMS device that is not stress-isolated. Moreover, manufacturing the MEMS device by first forming a trench and cavity on a backside of a wafer, before forming the MEMS device on a suspended platform, provides increased yield and allows for fabrication of smaller parts, in at least some embodiments.
Abstract:
Packaging of microfabricated devices, such as integrated circuits, microelectromechanical systems (MEMS), or sensor devices is described. The packaging is 3D heterogeneous packaging in at least some embodiments. The 3D heterogeneous packaging includes an interposer. The interposer includes stress relief platforms. Thus, stresses originating in the packaging do not propagate to the packaged device. A stress isolation platform is an example of a stress relief feature. A stress isolation platform includes a portion of an interposer coupled to the remainder of the interposer via stress isolation suspensions. Stress isolation suspensions can be formed by etching trenches through the interposer.
Abstract:
Disclosed herein are aspects of a multiple-mass, multi-axis microelectromechanical systems (MEMS) accelerometer sensor device with a fully differential sensing design that applies differential drive signals to movable proof masses and senses differential motion signals at sense fingers coupled to a substrate. In some embodiments, capacitance signals from different sense fingers are combined together at a sensing signal node disposed on the substrate supporting the proof masses. In some embodiments, a split shield may be provided, with a first shield underneath a proof mass coupled to the same drive signal applied to the proof mass and a second shield electrically isolated from the first shield provided underneath the sense fingers and biased with a constant voltage to provide shielding for the sense fingers.
Abstract:
A stress-isolated microelectromechanical systems (MEMS) device and a method of manufacture of the stress-isolated MEMS device are provided. MEMS devices may be sensitive to stress and may provide lower performance when subjected to stress. A stress-isolated MEMS device may be manufactured by etching a trench and/or a cavity in a first side of a substrate and subsequently forming a MEMS device on a surface of a platform opposite the first side of the substrate. Such a stress-isolated MEMS device may exhibit better performance than a MEMS device that is not stress-isolated. Moreover, manufacturing the MEMS device by first forming a trench and cavity on a backside of a wafer, before forming the MEMS device on a suspended platform, provides increased yield and allows for fabrication of smaller parts, in at least some embodiments.