Abstract:
Various systems and methods may guide, support, and/or house instruments. One exemplary system includes a guide tube having a manipulation section and mated with rails carrying instrument control members. Moving the rails with respect to the guide tube, or another point of reference, can control movement of the manipulation section.
Abstract:
Medical systems are disclosed and may include an elongate member having a proximal end, a distal end, one or more channels extending between the proximal end and the distal end, and a handle operably coupled to the proximal end. The handle may include one or more ports in communication with the one or more channels. The medical systems may further include a docking station supporting the proximal end of the elongate member. The docking station may include a receiver adapted to receive and secure the handle and an adaptor guide unit having a distal end, a proximal end, and one or more passages formed therethrough, the one or more passages communicating with the one or more channels.
Abstract:
Exemplary medical devices may include a snare device. The snare device may include a first leg having a proximalmost end and a second leg having a proximalmost end. The first leg and the second leg may form a distal loop. The proximalmost end of first leg may be independently moveable relative to the proximalmost end of the second leg.
Abstract:
Described herein are drive systems and methods. One exemplary system includes a tool having a proximal handle and a catheter body. The tool can be mated with a rail and the rail mated with a frame. The connection between the tool and rail and/or the rail and frame can allow relative movement of the tool with respect to the frame, a patient, and/or a point of reference. In one exemplary configuration the handle of the tool rotates around an axis that corresponds to a portion of the catheter body, such that rotational movement of the handle has a minimal impact on longitudinal movement and/or position of a distal end of the tool.
Abstract:
Embodiments of the present disclosure include medical devices and related methods of use, and manufacture thereof. The medical device may include a snare including an elongate actuation member and a distal snare member. The medical device may further include a snare support including first and second arms and a base member disposed proximate to the elongate actuation member. The first arm may extend from the base member to a first lateral portion of the distal snare member and the second arm may extend from the base member to a second lateral portion of the distal snare member opposite the first lateral portion. Each arm may be moveably coupled to the distal snare member.
Abstract:
A medical device for resecting tissue. The medical device includes a catheter shaft having a proximal portion and two or more distal branch portions. The distal branch portions are moveable between a closed position, and an open position. One or more lumens extend between the proximal portion and through each distal branch portion. An actuation element extends through the lumen of each distal branch portion. A snare loop is connected to each actuation element.
Abstract:
A medical device may include tubular member having a proximal end, a distal end, and a lumen extending therebetween. The tubular member may include an opening at a distal portion of the tubular member, wherein the opening is in communication with the lumen, wherein a distal end of the opening is disposed proximate of the distal end of the tubular member, and wherein the distal portion of the tubular member is configured to bend in at least one plane. The medical device may further include an actuation member extending at least partially within the tubular member, wherein a distal portion of the actuation member is configured to exit the tubular member at a location proximate the opening, wherein a distal end of the actuation member is coupled to the distal end of the tubular member, and wherein pulling the actuation member proximally is configured to cause the distal portion of tubular member to form a loop with itself.
Abstract:
A device for tissue resection and methods of using the same is disclosed, including a snare loop and a tubular handle. The snare loop has both conductive and insulated portions such that the snare loop can be used to cut tissue selectively to make perimeter cuts on the tissue to be resected. The snare loop may be placed and tightened on a target tissue and may be activated for cutting the tissue to be resected by passing an electrical current through the snare loop. Some embodiments of the device include a hood and cutting wire for making perimeter cuts on the tissue to be resected.
Abstract:
Embodiments of the present disclosure include a method for treating tissue. The method may include delivering a medical device through a channel of an endoscopic device, wherein the medical device may include an elongate member, a cap coupled to a distal end of the elongate member and having a cavity, and an electrically-conductive tool extending into the cavity of the cap. The method may also include extending a portion of the medical device out of the channel of the endoscopic device and to the tissue, drawing a portion of the tissue into the cavity of the cap, electrically activating the tool to pierce the portion of the tissue, and cutting the tissue by moving the medical device along a plane of the tissue.
Abstract:
A tissue resection hood and related method of use for resecting the tissue are described. The tissue resection hood may include a distal end portion having an opening, a proximal end portion, and a cavity defined between the proximal and distal end portions, wherein the proximal end portion defines an opening configured to couple to an end of a sheath. The tissue resection hood may further include a cutting member configured to traverse the opening in the distal end portion and a mechanism configured to control a dimension of the cavity.