摘要:
A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, the method can include engaging a microelectronic substrate with a polishing surface of a polishing pad, electrically coupling a conductive material of the microelectronic substrate to a source of electrical potential, and oxidizing at least a portion of the conductive material by passing an electrical current through the conductive material from the source of electrical potential. For example, the method can include positioning first and second electrodes apart from a face surface of the microelectronic substrate and disposing an electrolytic fluid between the face surface and the electrodes with the electrodes in fluid communication with the electrolytic fluid. The method can further include removing the portion of conductive material from the microelectronic substrate by moving at least one of the microelectronic and the polishing pad relative to the other. Accordingly, metals such as platinum can be anisotropically removed from the microelectronic substrate. The characteristics of the metal removal can be controlled by controlling the characteristics of the electrical signal applied to the microelectronic substrate, and the characteristics of a liquid disposed between the microelectronic substrate and the polishing pad.
摘要:
A contact structure is provided incorporating an amorphous titanium nitride barrier layer formed via low-pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe2)4, as the precursor.
摘要翻译:提供了一种接触结构,其结合使用四 - 二烷基酰氨基 - 钛,Ti(NMe 2 O 3)4 Si 3 O 4的低压化学气相沉积(LPCVD)形成的无定形氮化钛阻挡层。 ,作为前体。
摘要:
An improved semiconductor device fabrication method comprises insertion of a semiconductor wafer into a high-pressure heated chamber and deposition of a low melting-point aluminum material into a contact hole or via and over an insulating layer overlying a substrate of the wafer. The wafer is heated up to the melting point of the aluminum material and the chamber is pressurized to force the aluminum material into the contact holes or vias and eliminate voids present therein. A second layer of material, comprising a different metal or alloy, which is used as a dopant source, is deposited over an outer surface of the deposited aluminum material layer and allowed to diffuse into the aluminum material layer in order to form a homogenous aluminum alloy within the contact hole or via. A semiconductor device structure made according to the method is also disclosed.
摘要:
An ovonic phase-change semiconductor memory device having a reduced area of contact between electrodes of chalcogenide memories, and methods of forming the same, are disclosed. Such memory devices are formed by forming a tip protruding from a lower surface of a lower electrode element. An insulative material is applied over the lower electrode such that an upper surface of the tip is exposed. A chalcogenide material and an upper electrode are either formed atop the tip, or the tip is etched into the insulative material and the chalcogenide material and upper electrode are deposited within the recess. This allows the memory cells to be made smaller and allows the overall power requirements for the memory cell to be minimized.
摘要:
A method for providing a high flux of point of use activated reactive species for semiconductor processing wherein a workpiece is exposed to a gaseous atmosphere containing a transmission gas that is substantially nonattenuating to preselected wavelengths of electromagnetic radiation. A laminar flow of a gaseous constituent is also provided over a substantially planar surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the gaseous atmosphere such that it converges in the laminar flow to provide maximum beam energy in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The gaseous constituent is dissociated by the beam producing an activated reactive species that reacts with the surface of the workpiece.
摘要:
A method of forming minimally spaced apart MRAM structures is disclosed. A photolithography technique is employed to define patterns an integrated circuit, the width of which is further reduced by etching to allow formation of patterns used to etch digit line regions with optimum critical dimension between any of the two digit line regions. Subsequent pinned and sense layers of MRAM structures are formed over the minimally spaced digit regions.
摘要:
Method for forming at least a portion of a top electrode of a container capacitor and at least a portion of a contact plug in one deposition are described. In one embodiment, the top electrode is formed interior to a bottom electrode of the container capacitor. In another embodiment, the top electrode is formed interior to, and exterior and below a portion of the bottom electrode of the container capacitor. The method of forming a top electrode of a container capacitor and a contact plug with a same deposition is particularly well-suited for high-density memory array formation.
摘要:
A method of fabricating a MRAM structure and the resulting structure. The MRAM structure of the invention has the pinned layer recessed within a trench with the upper magnetic layer positioned over it. The method of MRAM fabrication utilizes a spacer processing technique, whereby the upper magnetic layer of the MRAM stack structure is formed between the region defined by the spacers, thereby allowing for self-alignment of the upper magnetic layer over the underlying pinned magnetic layer.
摘要:
An ovonic phase-change semiconductor memory device having a reduced area of contact between electrodes of chalcogenide memories, and methods of forming the same. Such memory devices are formed by forming a tip protruding from a lower surface of a lower electrode element An insulative material is applied over the lower electrode such that an upper surface of the tip is exposed. A chalcogenide material and an upper electrode are either formed atop the tip, or the tip is etched into the insulative material and the chalcogenide material and upper electrode are deposited within the recess. This allows the memory cells to be made smaller and allows the overall power requirements for the memory cell to be minimized.
摘要:
An improved semiconductor device structure comprises insertion of a semiconductor wafer into a high-pressure heated chamber and the deposition of a low-melting point aluminum material into a contact hole or via and over an insulating layer overlying a substrate of the wafer. The wafer is heated up to the melting point of the aluminum material and the chamber is pressurized to force the aluminum material into the contact holes or vias and eliminate voids present therein. A second layer of material, comprising a different metal or alloy, which is used as a dopant source, is deposited over an outer surface of the deposited aluminum material layer and allowed to diffuse into the aluminum material layer in order to form a homogenous aluminum alloy within the contact hole or via. A semiconductor device structure made according to the method is also disclosed.