摘要:
RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
摘要:
Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
摘要:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
摘要:
The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
摘要:
Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
摘要:
Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are formed from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurring during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
摘要:
Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFAB™).
摘要:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
摘要:
RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
摘要:
Disclosed methods reduce the discontinuities between individual layers of a structure that are formed at least in part using electrochemical fabrication techniques. Discontinuities may exist between layers of a structure as a result of up-facing or down-facing regions defined in data descriptive of the structure or they may exist as a result of building limitations, e.g., limitations that result in non-parallel orientation between a building axis and sidewall surfaces of layers. Methods for reducing discontinuities may be applied to all regions or only to selected regions of the structure. Methods may be tailored to improve the accuracy between an original design of the structure and the structure as fabricated or they may simply be used to smooth the discontinuities between layers. Methods may include deposition operations that selectively favor filling of the discontinuities and/or etching operations that selectively favor removal of material from protrusions that define discontinuities.