Abstract:
Semiconductor devices with low junction capacitances and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming isolation regions in a substrate to form active areas. The sidewalls of the active areas are enclosed by the isolation regions. The isolation regions are recessed to expose first parts of the sidewalls of the active areas. The first parts of the sidewalls of the active areas are covered with spacers. The isolation regions are etched to expose second parts of the sidewalls of the active area, the second parts being disposed below the first parts. The active areas are etched through the exposed second parts of the sidewalls to form lateral openings. The lateral openings are filled with a spin on dielectric.
Abstract:
A two-tier wireless soil measurement apparatus is disclosed, including a top head and a plurality of sensors, wherein top head being placed above soil surface and the plurality of sensors being scattered under soil; each sensor including a sensor housing, first communication module, sensor unit and power module; the sensor unit sensing a soil condition and generating soil data representing the soil condition, the first communication module transmitting the soil data wirelessly to top head, and the power module providing power for sensor unit and first communication module; the top head including a first communication module, controller, second communication module and power module; the first communication module receiving soil data from first communication modules of sensors, the controller processing soil data, the second communication module transmitting the soil data wirelessly to a data station, and power module providing power to first communication module, controller and second communication module.
Abstract:
A semiconductor structure includes a semiconductor fin on a top surface of a substrate, wherein the semiconductor fin includes a middle section having a first width; and a first and a second end section connected to opposite ends of the middle section, wherein the first and the second end sections each comprises at least a top portion having a second width greater than the first width. The semiconductor structure further includes a gate dielectric layer on a top surface and sidewalls of the middle section of the semiconductor fin; and a gate electrode on the gate dielectric layer.
Abstract:
System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.
Abstract:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
Abstract:
Semiconductor devices with low junction capacitances and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming isolation regions in a substrate to form active areas. The sidewalls of the active areas are enclosed by the isolation regions. The isolation regions are recessed to expose first parts of the sidewalls of the active areas. The first parts of the sidewalls of the active areas are covered with spacers. The isolation regions are etched to expose second parts of the sidewalls of the active area, the second parts being disposed below the first parts. The active areas are etched through the exposed second parts of the sidewalls to form lateral openings. The lateral openings are filled with a spin on dielectric.
Abstract:
A method of forming a semiconductor structure includes providing a composite substrate, which includes a bulk silicon substrate and a silicon germanium (SiGe) layer over and adjoining the bulk silicon substrate. A first condensation is performed to the SiGe layer to form a condensed SiGe layer, so that the condensed SiGe layer has a substantially uniform germanium concentration. The condensed SiGe layer and a top portion of the bulk silicon substrate are etched to form a composite fin including a silicon fin and a condensed SiGe fin over the silicon fine. The method further includes oxidizing a portion of the silicon fin; and performing a second condensation to the condensed SiGe fin.
Abstract:
Disclosed herein are various embodiments of techniques for preventing silicide stringer or encroachment formation during metal salicide formation in semiconductor devices. The disclosed technique involves depositing a protective layer, such as a nitride or other dielectric layer, over areas of the semiconductor device where metal silicide formation is not desired because such formation detrimentally affects device performance. For example, silicon particles that may remain in device features that are formed through silicon oxidation, such as under the gate sidewall spacers and proximate to the perimeter of shallow trench isolation structures, are protected from reacting with metal deposited to form metal silicide in certain areas of the device. As a result, silicide stringers or encroachment in undesired areas is reduced or eliminated by the protective layer.
Abstract:
System and method for improving the process performance of a contact module. A preferred embodiment comprises improving the process performance of a contact module by reducing surface variations of an interlayer dielectric. The interlayer dielectric comprises a plurality of layers, a first layer (for example, a contact etch stop layer 610) protects devices on a substrate from subsequent etching operations, while a second layer (for example, a first dielectric layer 620) covers the first layer. A third layer (for example, a second dielectric layer 630) fills gaps that may be due to the topography of the devices. A fourth layer (for example, a third dielectric layer 640), brings the interlayer dielectric layer to a desired thickness and is formed using a process that yields a very flat surface completes the interlayer dielectric. Using multiple layers permit the elimination of variations (filling gaps and leveling bumps) without resorting to chemical-mechanical polishing.
Abstract:
Strained channel transistors including a PMOS and NMOS device pair to improve an NMOS device performance without substantially degrading PMOS device performance and method for forming the same, the method including providing a semiconductor substrate; forming strained shallow trench isolation regions in the semiconductor substrate; forming PMOS and NMOS devices on the semiconductor substrate including doped source and drain regions; forming a tensile strained contact etching stop layer (CESL) over the PMOS and NMOS devices; and, forming a tensile strained dielectric insulating layer over the CESL layer.