Abstract:
A method that, using the surface-reaction mechanism of polysilicon in the chemical vapor deposition (CVD) process, starts in depositing a conformal first polysilicon layer on a uneven surface of a semiconductor wafer. The first polysilicon layer is then oxidized to a conformal first silicon oxide thin film. By repeating the previous two steps, a second polysilicon layer is formed on the surface of the first silicon oxide thin film and then oxidized to a second silicon oxide thin film with the required thickness. The conformal silicon oxide thin film formed by the method can be applied in structures of various devices in refined processes.
Abstract:
A method for forming a protection device with slope laterals is provided. Firstly, providing a semiconductor substrate having a plurality of alternative first sacrificial layers and second sacrificial layers formed thereon. A first etching step is performed to remove one portion of each of the first sacrificial layers and thereby expose one portion of each lateral of each of the second sacrificial layers. Subsequently, performing a second etching step to remove one portion of the lateral of the second sacrificial layer. Then, repeatedly and alternately performing the first etching step and the second etching step until completely removing the first sacrificial layers and then obtaining a plurality of protection devices formed of the second sacrificial layers each of which having slope laterals.
Abstract:
A method of fabricating a gate is described. A first dielectric layer having a first opening is formed on a substrate. A gate dielectric layer is formed in the opening. A lower portion of a floating gate is formed on the gate dielectric layer. A source/drain region is formed in the substrate beside the lower portion of the floating gate. A conductive layer is formed on the first dielectric layer to completely fill the first opening. The conductive layer is patterned to form a second opening in the conductive layer. The second opening is above the first opening and does not expose the first dielectric layer. The second opening has a tapered sidewall and a predetermined depth. A mask layer is formed to cover the conductive layer and fill the second opening. The mask layer outside the second opening is removed to expose the conductive layer. A portion of the mask layer is removed to leave a first etching mask layer in the second opening. An anisotropic etching process using the first etching mask layer as a mask is performed to etch the conductive layer. An upper portion of the floating gate is formed. The first dielectric layer is exposed. The first etching mask is removed. Thereafter, a dielectric layer between gates and a control gate is formed over the floating gate.
Abstract:
The present invention provides a drying method for removing a residual solution from a semiconductor wafer. The semiconductor wafer is placed into a chamber, and then the air pressure of the chamber is lowered from atmospheric pressure to a lower pressure. Next, an inert gas with a predetermined pressure is injected into the chamber to exchange with the dissolved oxygen in the residual solution. The pressure in the chamber is reduced to 0.5˜100 torr so as to lower the boiling point of the solution and to remove the displaced oxygen. Finally, a heating process is performed to completely evaporate the residual solution on the semiconductor wafer.
Abstract:
Provided is a photoresist that includes a polymer having a backbone that is breakable and a photo acid generator that is free of bonding from the polymer. Further, provided is a method of fabricating a semiconductor device. The method includes providing a device substrate. A material layer is formed over the substrate. A photoresist material is formed over the material layer. The photoresist material has a polymer that includes a backbone. The photoresist material is patterned to form a patterned photoresist layer. A fabrication process is then performed to the material layer, wherein the patterned photoresist layer serves as a mask in the fabrication process. Thereafter, the patterned photoresist layer is treated in a manner that breaks the backbone of the polymer. The patterned photoresist layer is then removed.
Abstract:
A system to form a wet soluble lithography layer on a semiconductor substrate includes providing the substrate, depositing a first layer comprising a first material on the substrate, and depositing a second layer comprising a second material on the substrate. In an embodiment, the first material comprises a different composition than the second material and one of the first layer and the second layer includes silicon.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a plurality of circuit devices over a substrate. The method includes forming an organic layer over the substrate. The organic layer is formed over the plurality of circuit devices. The method includes polishing the organic layer to planarize a surface of the organic layer. The organic layer is free of being thermally treated prior to the polishing. The organic material is un-cross-linked during the polishing. The method includes depositing a LT-film over the planarized surface of the organic layer. The depositing is performed at a temperature less than about 150 degrees Celsius. The depositing is also performed without using a spin coating process. The method includes forming a patterned photoresist layer over the LT-film.
Abstract:
Provided is a method including providing a substrate and forming a bottom anti-reflective coating (BARC) on the substrate. The BARC includes a first portion overlying a second portion, which has a different composition than the first portion. The different composition may provide a different dissolution property of the BARC in a developer. A photoresist layer is formed on the first portion of the BARC. The photoresist layer is then irradiated and developed. The developing includes using a developer to remove a region of the photoresist layer and a region of the first and second portions of the BARC.
Abstract:
A resist material and methods using the resist material are disclosed herein. An exemplary method includes forming a resist layer over a substrate, wherein the resist layer includes a polymer, a photoacid generator, an electron acceptor, and a photodegradable base; performing an exposure process that exposes portions of the resist layer with radiation, wherein the photodegradable base is depleted in the exposed portions of the resist layer during the exposure process; and performing an developing process on the resist layer.
Abstract:
Methods and materials for making a semiconductor device are described. The method includes providing a substrate, forming a surface-modified middle layer (SM-ML) that includes a fluorine-containing material over the substrate, forming a photoresist layer over the SM-ML, exposing the photoresist layer to an exposure energy, and developing the photoresist layer.