摘要:
The present invention relates to a three-dimensional package and a method of making the same. The method comprises: (a) providing a wafer; (b) forming at least one blind hole in the wafer; (c) forming an isolation layer on the side wall of the blind hole; (d) forming a conductive layer on the isolation layer; (e) forming a dry film on the conductive layer; (f) filling the blind hole with a solder; (g) removing the dry film; (h) patterning the conductive layer; (i) removing a part of the lower surface of the wafer and a part of the isolation layer, so as to expose a part of the conductive layer; (j) stacking a plurality of the wafers, and performing a reflow process; and (k) cutting the stacked wafers, so as to form a plurality of three-dimensional packages. As such, the lower end of the conductive layer is inserted into the solder of the lower wafer, so as to enhance the joint between the conductive layer and the solder, and effectively reduce the overall height of the three-dimensional packages after joining.
摘要:
The present invention relates to a three-dimensional package and a method of making the same. The method comprises: (a) providing a semiconductor body; (b) forming at least one blind hole in the semiconductor body; (c) forming an isolation layer on the side wall of the blind hole; (d) forming a conductive layer on the isolation layer; (e) patterning the conductive layer; (f) removing a part of the lower surface of the semiconductor body and a part of the isolation layer, so as to expose a part of the conductive layer; (g) forming a solder on the lower end of the conductive layer; (h) stacking a plurality of the semiconductor bodies, and performing a reflow process; and (i) cutting the stacked semiconductor bodies, so as to form a plurality of three-dimensional packages. As such, the lower end of the conductive layer and the solder thereon are “inserted” into the space formed by the conductive layer of the lower semiconductor body, so as to enhance the joining between the conductive layer and the solder, and effectively reduce the overall height of the three-dimensional packages after joining.
摘要:
A chip packaging process is provided. First, a matrix package substrate having a carrying surface with a plurality of scribe lines thereon is provided. The scribe lines divide the package substrate into a plurality of package substrate units. Then, a sealant is formed on each scribe line. A chip is disposed on each package substrate unit. Furthermore, the chip is electrically connected to a corresponding package substrate unit. Thereafter, a transparent cover is disposed over the matrix package substrate. The transparent cover and the matrix package substrate are connected via the sealant. After that, a trimming process along the scribe lines is performed to cut the transparent cover, the matrix package substrate and the sealant.
摘要:
An optical component package includes a substrate, an optical component, a plurality of spacers, a plurality of wires, and a transparent molding compound. The optical component is disposed on the substrate, and the surface of the optical component located away from the substrate is used to receive an optical signal. The spacers are disposed between the substrate and optical component. The wires electrically connect the optical component to the substrate. The transparent molding compound encapsulates the optical component. In this case, the diameter of each of the spacers is equal to the thickness of the transparent molding compound minus the thickness of the optical component minus the distance between where the optical signal enters the transparent molding compound and where the optical signal is received by the optical component. Furthermore, this invention also discloses a packaging method for the optical component package.
摘要:
A photoelectric device grinding process comprising the following steps is disclosed. A wafer comprising a plurality of chip units is provided. Each chip unit has at least a photoelectric device disposed on a surface layer. A dielectric substrate is attached to the wafer with glue having a plurality of spacers therein such that the photoelectric devices face the dielectric layer. The spacers maintain a gap between the dielectric substrate and the wafer. Thereafter, the dielectric substrate surface away from the wafer or the wafer surface away from the dielectric substrate or both is ground. The grinding process is particularly suitable for preventing any possible damage to the photoelectric devices on a wafer.
摘要:
A package structure of optical device has a chip, a sealant, a cover, a substrate, a plurality of bonding wires, and a transparent encapsulant. The chip has an optical device and a plurality of chip connection pads. The sealant is disposed around the optical elements. The cover is disposed on the sealant. The substrate supports the chip and has a plurality of connection pads. The bonding wires are used for electrically connecting the chip connection pads of the chip to the connection pads of the substrate. The transparent encapsulant is formed over the substrate and the cover, and encapsulates the bonding wires.
摘要:
An anti-warp package comprising a packaging substrate, a chip and a stiffening member is provided. The chip is disposed on a top surface of the packaging substrate. The stiffening member is disposed on a bottom surface of the packaging substrate in a location underneath the surrounding area of the chip. Through the disposition of a stiffening member, warping stress on the packaging substrate when the chip is encapsulated by molding compound is counterbalanced.
摘要:
A mold for molding semiconductor devices mounted on a package substrate is provided. The mold comprises a top mold and a bottom mold. The top mold has a top runner, at least a first dummy runner and a plurality of mold cavities. The first dummy runner connects with the top runner and the top runner extends into a space between the mold cavities. The mold cavities for accommodating the semiconductor devices are connected to the top runner. The bottom mold has a bottom runner and at least a second dummy runner. The second dummy runner connects with the bottom runner. The second dummy runner is above but separated from the first dummy runner by the package substrate.