Abstract:
A method of fabricating a three dimensional integrated circuit comprises forming a redistribution layer on a first side of a packaging component, forming a holding chamber in the redistribution layer, attaching an integrated circuit die on the first side of the packaging component, wherein an interconnect bump of the integrated circuit die is inserted into the holding chamber, applying a reflow process to the integrated circuit die and the packaging component and forming an encapsulation layer on the packaging component.
Abstract:
The present invention relates to a method for making a stackable package. The method includes the following steps: (a) providing a first carrier; (b) disposing at least one chip on the first carrier; (c) forming a molding compound so as to encapsulate the chip; (d) removing the first carrier; (e) forming a first redistribution layer and at least one first bump; (f) providing a second carrier; (g) disposing on the second carrier; (h) removing part of the chip and part of the molding compound; (i) forming a second redistribution layer; and (j) removing the second carrier. Therefore, the second redistribution layer enables the stackable package to have more flexibility to be utilized.
Abstract:
A package comprises a first unit including a semiconductor body, a hole, an isolation layer, a conductive layer and a solder. The semiconductor body has a first surface having a pad and a protection layer exposing the pad. The hole penetrates the semiconductor body. The isolation layer is disposed on the side wall of the hole. The conductive layer covers the pad, a part of the protection layer, and the isolation layer. The lower end of the conductive layer extends to below a second surface of the semiconductor body. The solder is disposed in the hole, and is electrically connected to the pad via the conductive layer. A second unit similar to the first unit and stacked thereon includes a lower end of a second conductive layer that extends to below a second surface of a second semiconductor body and contacts the upper end of the first solder.
Abstract:
The present invention relates to a three-dimensional package and a method of making the same. The method comprises: (a) providing a semiconductor body; (b) forming at least one blind hole in the semiconductor body; (c) forming an isolation layer on the side wall of the blind hole; (d) forming a conductive layer on the isolation layer; (e) patterning the conductive layer; (f) removing a part of the lower surface of the semiconductor body and a part of the isolation layer, so as to expose a part of the conductive layer; (g) forming a solder on the lower end of the conductive layer; (h) stacking a plurality of the semiconductor bodies, and performing a reflow process; and (i) cutting the stacked semiconductor bodies, so as to form a plurality of three-dimensional packages. As such, the lower end of the conductive layer and the solder thereon are “inserted” into the space formed by the conductive layer of the lower semiconductor body, so as to enhance the joining between the conductive layer and the solder, and effectively reduce the overall height of the three-dimensional packages after joining.
Abstract:
A three-dimensional package and a method of making the same including providing a wafer; forming at least one blind hole in the wafer; forming an isolation layer on the side wall of the blind hole; forming a conductive layer on the isolation layer; forming a dry film on the conductive layer; filling the blind hole with metal; removing the dry film, and patterning the conductive layer; removing a part of the metal in the blind hole to form a space; removing a part of the second surface of the wafer and a part of the isolation layer, to expose a part of the conductive layer; forming a solder on the lower end of the conductive layer, the melting point of the solder is lower than the metal; stacking a plurality of the wafers, and performing a reflow process; and cutting the stacked wafers, to form three-dimensional packages.
Abstract:
A semiconductor package structure comprises a chip, a plurality of pad extension traces, a plurality of via holes, a lid and a plurality of metal traces, wherein the chip has an optical component and a plurality of pads disposed on its active surface; pad extension traces are electrically connected to the pads; the via holes penetrate the chip and are electrically connected to the pad extension traces and exposed out of side surfaces of the semiconductor package structure; the lid is adhered onto the active surface of the chip; and the plurality of metal traces is disposed on the back surface of the chip, electrically connected to the plurality of via holes, and used to define a plurality of solder pads thereon. The present invention also provides a method for manufacturing the semiconductor package structure.
Abstract:
A mold for molding semiconductor devices mounted on a package substrate is provided. The mold comprises a top mold and a bottom mold. The top mold has a top runner, at least a first dummy runner and a plurality of mold cavities. The first dummy runner connects with the top runner and the top runner extends into a space between the mold cavities. The mold cavities for accommodating the semiconductor devices are connected to the top runner. The bottom mold has a bottom runner and at least a second dummy runner. The second dummy runner connects with the bottom runner. The second dummy runner is above but separated from the first dummy runner by the package substrate.
Abstract:
The present invention relates to a method of making a package structure by dicing a wafer from the backside surface thereof comprising: (a) providing a first wafer having a active surface, a backside surface and a plurality of scribe lines defining a plurality of chips, wherein each chip has an annular body thereon; (b) dicing the first wafer from the active surface to form a reference coordinate; (c) providing a second wafer; (d) covering and joining the second wafer to the first wafer to form a plurality of cavities; and (e) dicing the corresponding positions of the scribe lines of the first wafer from the backside surface thereof according to the predetermined distance from the reference coordinate so as to form an individual package structure. As a result, the manufacture time is reduced.
Abstract:
A wafer-level package with a cavity includes a chip, a substrate, and a seal member. The chip has a micro device and a plurality of bonding pads electrically connected to the micro device. The substrate has a plurality of through conductive vias corresponding and electrically connected to the bonding pads. Each of the bonding pads on the chip is provided with a conductive bump for electrically connecting the bonding pad to the conductive via. The seal member surrounds the package to form a hermetical cavity. The present invention further provides a method for fabricating the wafer-level package with a cavity.
Abstract:
A multichip wafer-level package includes a first chip, a second chip, a bump ring and a plurality of bumps. The first chip has a semiconductor device, a first bonding ring surrounding the semiconductor device, a plurality of internal bonding pads disposed within the first bonding ring and electrically connected to the semiconductor device, and a plurality of external bonding pads disposed outside the first bonding ring and electrically connected to the semiconductor device for electrically connecting to an external circuit. The second chip has an electronic device, a plurality of bonding pads electrically connected to the electronic device and corresponding to the internal bonding pads of the first chip, and a second bonding ring corresponding to the first bonding ring of the first chip. The bump ring is disposed between the first bonding ring of the first chip and the second bonding ring of the second chip for bonding the first and the second chips so as to form a cavity for accommodating the semiconductor device. The bumps electrically connect the internal bonding pads of the first chip to the bonding pads of the second chip.