Abstract:
An optical touch device includes a display panel and at least a light emitting and receiving unit. The display panel includes a transparent substrate having a touch surface and a plurality of side surfaces adjacent to the touch surface. At least one of the side surfaces is a first light incidence surface and at least one of the side surfaces is a first light emitting surface. Each light emitting and receiving unit includes a linear light source and a light sensing component. The linear light source is disposed beside the first light incidence surface and is configured for providing optical signals into the transparent substrate. The light sensing component is disposed beside the first light emitting surface. The light sensing component is configured for receiving the optical signals from the linear light source. The optical touch display device has advantages of low cost.
Abstract:
A lens module is suitable for a wafer level process and works in collaboration with an image sensor. The lens module includes a substrate, a lens and a spacer. The lens is disposed on a surface of the substrate for concentrating a light. The spacer is disposed on the substrate and surrounds the lens to block the light from penetrating the substrate through a circumference of the lens. The substrate and the lens are made of a light transmissive material and the spacer is made of an opaque material for shielding a stray light coming from outside, thereby improving a sensing performance of the image sensor.
Abstract:
A mouse wheel assembly is provided according to the present invention. The mouse wheel assembly includes a member and an optical module. The member has a pattern formed thereon. The optical module is adapted to illuminate the pattern on the member, capture an image of the pattern as a result of the illumination and recognize a feature change of the image of the pattern to obtain the change direction and change speed of the member.
Abstract:
A chip package structure includes a silicon substrate, a sensing component, a metal circuit layer, a first insulating layer and a conductive metal layer. The silicon substrate has opposite first and second surfaces. The sensing component is disposed on the first surface. The metal circuit layer is disposed on the first surface and electrically connected to the sensing component. The first insulating layer covers the second surface and has a first through hole to expose a portion of the second surface. The conductive metal layer is disposed on the first insulating layer and includes first leads and a second lead. The first leads are electrically connected to the metal circuit layer. The second lead is filled in the first through hole to electrically connect to the silicon substrate and one of the first leads. A chip packaging process for fabricating the chip package structure is also provided.
Abstract:
A circuit substrate suitable for being connected to at least one solder ball is provided. The circuit substrate includes a substrate, at least one bonding pad, and a solder mask. The substrate has a surface. The bonding pad is disposed on the surface of the substrate for being connected to the solder ball. The solder mask covers the surface of the substrate and has an opening for exposing a portion of the bonding pad. The opening has a first end and a second end. As compared with the second end, the first end is much farther from the bonding pad, and a diameter of the first end is larger than that of the second end.
Abstract:
A sensing module comprises a carrier, a sensor, a substrate, and a plurality of chips. The carrier has a carrying surface and a back surface opposite to the carrying surface. The sensor and the substrate are disposed on the carrying surface and are electrically connected to the carrier respectively. The chips are disposed on the substrate and are electrically connected to the substrate respectively. The production cost of the sensing module is low.
Abstract:
A display panel and an assembling method of the same are described. An image capture module is electrically disposed on a substrate of a display module, such that the image capture module and the display module are combined into an integrated structure, so as to reduce the overall size of a display assembled by using the display panel.
Abstract:
An optical touch display device includes a display unit and at least one light sensing module. The display unit includes a first substrate and a display layer. The first substrate has a display area and a non-display area surrounding the display area. The display layer is disposed on the display area of the first substrate. The light sensing module is disposed on an upper surface of the non-display area of the first substrate. A side surface of the light sensing module has a light sensing window, and at least a portion of the light sensing window is adapted to receive light above the display unit. The optical touch display device has a thin thickness.
Abstract:
A circuit interface device is presented. A circuit board is secured by a circuit board cover, a plurality of electrical contacts is disposed on the circuit board, and a connector cover is coupled to a front end of the circuit board, such that a socket disposed at one end of the connector cover is corresponding to an upper side of the electrical contacts of the circuit board, thereby forming a connector of the circuit interface device. As such, through a structural design of buckling the connector cover on the circuit board without completely covering the connector cover on outer edge of the circuit board, a thickness of the connector cover covering the circuit board cover is reduced.
Abstract:
A package and the method for making the same, and a stacked package, the method for making the package includes the following steps: (a) providing a carrier having a plurality of platforms; (b) providing a plurality of dice, and disposing the dice on the platforms; (c) performing a reflow process so that the dice are self-aligned on the platforms; (d) forming a molding compound in the gaps between the dice, and (e) performing a cutting process so as to form a plurality of packages. Since the dice are self-aligned on the platforms during the reflow process, a die attach machine with low accuracy can achieve highly accurate placement.