SYSTEMS, METHODS AND APPARATUS FOR ACTIVE COMPENSATION OF QUANTUM PROCESSOR ELEMENTS
    32.
    发明申请
    SYSTEMS, METHODS AND APPARATUS FOR ACTIVE COMPENSATION OF QUANTUM PROCESSOR ELEMENTS 有权
    用于量子处理器元件的主动补偿的系统,方法和装置

    公开(公告)号:US20150379418A1

    公开(公告)日:2015-12-31

    申请号:US14846334

    申请日:2015-09-04

    CPC classification number: H01L39/223 B82Y10/00 G06N99/002 H01L27/18

    Abstract: Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.

    Abstract translation: 装置和方法使得能够对量子处理器的超导元件中的不期望的差异进行主动补偿。 量子位可以包括主复合约瑟夫逊结(CJJ)结构,其可以包括至少第一次级CJJ结构,以能够补偿主CJJ结构中的约瑟夫逊结不对称性。 量子位可以包括与第一CJJ结构并联耦合以提供可调电容的串联LC电路。 量子位控制系统可以包括用于调整量子位环路的电感的装置,例如感应耦合到量子位循环并由编程接口控制的可调谐耦合器件,或与量子位循环串联耦合并由编程接口控制的CJJ结构 。

    SYSTEMS, METHODS AND APPARATUS FOR MEASURING MAGNETIC FIELDS
    33.
    发明申请
    SYSTEMS, METHODS AND APPARATUS FOR MEASURING MAGNETIC FIELDS 审中-公开
    用于测量磁场的系统,方法和装置

    公开(公告)号:US20150346291A1

    公开(公告)日:2015-12-03

    申请号:US14462200

    申请日:2014-08-18

    CPC classification number: G01R33/0354 G01R33/0017 G01R33/0094

    Abstract: SQUIDs may detect local magnetic fields. SQUIDS of varying sizes, and hence sensitivities may detect different magnitudes of magnetic fields. SQUIDs may be oriented to detect magnetic fields in a variety of orientations, for example along an orthogonal reference frame of a chip or wafer. The SQUIDS may be formed or carried on the same chip or wafer as a superconducting processor (e.g., a superconducting quantum processor). Measurement of magnetic fields may permit compensation, for example allowing tuning of a compensation field via a compensation coil and/or a heater to warm select portions of a system. A SQIF may be implemented as a SQUID employing an unconventional grating structure. Successful fabrication of an operable SQIF may be facilitated by incorporating multiple Josephson junctions in series in each arm of the unconventional grating structure.

    Abstract translation: SQUID可以检测局部磁场。 具有不同尺寸的SQUIDS,因此灵敏度可以检测不同的磁场强度。 SQUID可以被定向以检测各种取向中的磁场,例如沿着芯片或晶片的正交参考系。 SQUIDS可以与超导处理器(例如超导量子处理器)形成或携带在相同的芯片或晶片上。 磁场的测量可以允许补偿,例如允许通过补偿线圈和/或加热器对补偿场进行调谐以温暖系统的选择部分。 SQIF可以被实现为采用非常规光栅结构的SQUID。 可以通过将多个约瑟夫逊结串联在非常规光栅结构的每个臂中来促进可操作的SQIF的成功制造。

    UNIVERSAL ADIABATIC QUANTUM COMPUTING WITH SUPERCONDUCTING QUBITS
    34.
    发明申请
    UNIVERSAL ADIABATIC QUANTUM COMPUTING WITH SUPERCONDUCTING QUBITS 审中-公开
    具有超导功能的通用ADIABATIC量子计算机

    公开(公告)号:US20150111754A1

    公开(公告)日:2015-04-23

    申请号:US14520139

    申请日:2014-10-21

    CPC classification number: G06N99/002 G11C11/44 H03K3/38 H03K19/1952

    Abstract: A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.

    Abstract translation: 量子处理器可用作通用绝热量子计算系统。 量子处理器包括物理量子位,其中至少第一和第二通信耦合分别通过原位可调谐超导电容耦合器和原位可调谐超导感应耦合器在成对的量子位之间可用。 可调谐耦合器提供对角线和非对角线耦合。 可调谐耦合器的复合约瑟夫逊结(CJJ)响应于通量偏置来调节固定电容器的电容和在一对耦合电容器之间介导的可调谐电容之和的符号和幅度。 量子位可以是混合量子位,可在通量状态或电荷状态下操作。 Qubits可以包括一对中断材料环的CJJ,它们被相对于量子位体电压偏置的超导材料岛隔开。

    Universal adiabatic quantum computing with superconducting qubits

    公开(公告)号:US11348024B2

    公开(公告)日:2022-05-31

    申请号:US16029040

    申请日:2018-07-06

    Abstract: A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.

    SYSTEMS AND METHODS FOR IMPLEMENTING FINITE ELEMENT MODELLING

    公开(公告)号:US20210304050A1

    公开(公告)日:2021-09-30

    申请号:US17199079

    申请日:2021-03-11

    Abstract: A system and method of implementing finite element modeling on a quantum processor is discussed. A representation of a computational problem including a boundary value problem and problem grid points is received by one or more processors. The problem grid points are mapped to a Hilbert space of the qubits of the quantum processor. The boundary value problem is transformed into a problem Hamiltonian. Instructions are transmitted to the quantum processor to cause the quantum processor to evolve from an initial state to a final state based on the problem Hamiltonian. The wavefunction amplitudes of the final state are measured, and the wavefunction amplitudes of the final state are mapped onto the problem grid points based on the Hilbert space of the qubits.

    Quantum processor with instance programmable qubit connectivity

    公开(公告)号:US10891554B2

    公开(公告)日:2021-01-12

    申请号:US16258082

    申请日:2019-01-25

    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.

    Systems and methods for increasing analog processor connectivity

    公开(公告)号:US10268622B2

    公开(公告)日:2019-04-23

    申请号:US15418497

    申请日:2017-01-27

    Abstract: Topologies for analog computing systems are provided. Qubits in the topology are grouped into cells, and cells are coupled to adjacent cells by inter-cell couplers. At least some cells are coupled to non-adjacent cells via long-range couplers. Long-range couplers may be arranged into coverings so that certain sets of qubits within a covering region may be coupled with a reduced number of couplers. Each cell within a covering region without a long-range coupler may be proximate to a cell with a long range coupler so that each cell within the covering region is no more than a certain coupling distance away from a long-range coupler. Long-range couplers may couple over a greater physical distance than inter-cell couplers. Long-range couplers may couple to qubits over a larger coupling region, and may extend across multiple crossing regions between qubits.

Patent Agency Ranking