Abstract:
The instant invention provides a sealant composition, method of producing the same, film layers and multilayer structures made therefrom. The linear low density polyethylene composition suitable for sealant applications according to the present invention comprises: less than or equal to 100 percent by weight of the units derived from ethylene; less than 35 percent by weight of units derived from one or more α-olefin comonomers; wherein said linear low density polyethylene composition has a density in the range of 0.900 to 0.920 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 2.5 to 4.5, a melt index (I2) in the range of 0.5 to 3 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of from 2.2 to 3, vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition, and a zero shear viscosity ratio (ZSVR) in the range from 1.0 to 1.2.
Abstract:
The instant invention provides a polyethylene blend-composition suitable for blown films, and films made therefrom. The polyethylene blend-composition suitable for blown films comprises the melt blending product of: (a) from 0.5 to 4 percent by weight of a low density polyethylene having a density in the range of from 0.915 to 0.935 g/cm3, and a melt index (I2) in the range of from greater than 0.8 to less than or equal to 5 g/10 minutes, and a molecular weight distribution (Mw/Mn) in the range of from 6 to 10; (b) 90 percent or greater by weight of an ethylene/α-olefin interpolymer composition, wherein ethylene/α-olefin interpolymer composition has a Comonomer Distribution Constant (CDC) in the range of from 75 to 200, a vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of the ethylene/α-olefin interpolymer composition; a zero shear viscosity ratio (ZSVR) in the range from 2 to 20; a density in the range of from 0.903 to 0.950 g/cm3, a melt index (12) in a range of from 0.1 to 5 g/10 minutes, a molecular weight distribution (Mw/Mn) in the range of from 1.8 to 3.5; (c) optionally a hydrotalcite based neutralizing agent; (d) optionally one or more nucleating agents; (e) and optionally one or more antioxidants.
Abstract:
A film having at least one layer, and the layer includes a multimodal high density polyethylene having: a melt index (I2) that is from 0.8 g/10 min to 5.0 g/10 min; a density that is from 0.950 g/cc to 0.965 g/cc; a polydispersity (Mw/Mn) that is from 10 to 20; and a molecular weight (Mz) that is from 500,000 g/mol to 1,000,000 g/mol. The film is a biaxially oriented polyethylene film.
Abstract:
The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises: at least one inner layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of one or more polyethylenes having a density between 0.926 g/cm3 to 0.970 g/cm3 and a melt index (I2) between 0.1 to 10 g/10 min; (b) 20 to 5000 ppm, based on the total weight of the polyethylene-based composition of a sorbitol acetal derivative comprising the structure of formula (I): wherein R1-R5 comprise the same or different moieties chosen from hydrogen and a C1-C3 alkyl.
Abstract:
A polyolefin-based laminating adhesive composition for use in producing a mechanical recyclable material, the adhesive composition including a mixture of: (a) at least one saturated polyolefin polyol; and (b) at least one aliphatic multi-functional isocyanate compound; a process for producing the above adhesive composition; a mechanically recyclable multi-layer laminate including: (A) at least one first film substrate layer; (B) at least one second film substrate layer; and (C) at least one layer of the above polyolefin-based laminating adhesive composition; wherein the at least one first film substrate layer is bonded to the at least one second film substrate layer via the adhesive composition layer; a process for producing the above mechanically recyclable multi-layer laminate; and a packaging article made from the above mechanically recyclable multi-layer laminate.
Abstract:
The present disclosure provides a process. In an embodiment, the process includes elongating a multilayer film to a impart a haze value greater than 30% to the multilayer film. The multilayer film has at least two layers: (A) a core layer composed of an ethylene/α-olefin multi-block copolymer and (B) a first skin layer in contact with the core layer, the skin layer composed of an ethylene-based polymer. The process includes releasing the elongating force from the elongated multilayer film to form a hazed multilayer film having a haze value greater than 30%. The process includes stretching the hazed multilayer film to form a stretched multilayer film having a clarity value greater than 80%. The process includes relaxing the stretch force from the stretched multilayer film to form a relaxed multilayer film having a haze value greater than 30%.
Abstract:
The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises at least one layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.5 to 10 g/10 minutes.
Abstract:
A composition suitable for making uncrosslinked polyethylene foam and an uncrosslinked polyethylene foam comprising: 50-95 wt. % of a low density polyethylene having a density ranging from 0.915 to 0.930 g/cc and melt index of 1-4 g/10 min; and 5-50 wt. % of an ethylene/alpha-olefin interpolymer having: a density ranging from 0.910-0.930 g/cc; a melt index ranging from 0.5 to 6.0 g/10 min; a Mw/Mn of from 2.8 to 4.5; and a ZSVR of 1.8 to 10.0.
Abstract:
Artificial turf filaments formed from polyethylene are provided that can have desirable properties. In one aspect, an artificial turf filament comprises a composition comprising a first composition, wherein the first composition comprises at least one ethylene-based polymer and wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio (I10/I2) that meets the following equation: I10/I2≥7.0−1.2×log (I2).
Abstract:
An ethylene/alpha-olefin copolymer composition having a density from 0.935 to 0.955 g/cc; a ratio of weight average molecular weight to number average molecular weight, Mw/Mn, of from 3 to 10; a z-average molecular weight, Mz, from 200 kg/mol to 500 kg/mol; and a PENT value of greater than 500 hours at 80° C. and 2.4 MPa; wherein when the composition is formed into a monolayer pipe the pipe has a pipe hydrostatic strength of greater than 100 hours at 20° C. and 12.0 MPa. Also provided is a pipe or pipe fitting comprising the ethylene/alpha-olefin copolymer composition.