摘要:
A double-gate transistor has front (upper) and back gates aligned laterally by a process of forming symmetric sidewalls in proximity to the front gate and then oxidizing the back gate electrode at a temperature of at least 1000 degrees for a time sufficient to relieve stress in the structure, the oxide penetrating from the side of the transistor body to thicken the back gate oxide on the outer edges, leaving an effective thickness of gate oxide at the center, aligned with the front gate electrode. Optionally, an angled implant from the sides of an oxide enhancing species encourages relatively thicker oxide in the outer implanted areas and an oxide-retarding implant across the transistor body retards oxidation in the vertical direction, thereby permitting increase of the lateral extent of the oxidation.
摘要:
A method is provided for blocking implants from the gate electrode of an FET device. Form a first planarizing film covering the substrate and the gate electrode stack. The first planarizing film is planarized by either polishing or self-planarizing. For deposition by HDP or use of spin on materials, the film is self-planarizing. Where polishing is required, the first planarizing film is planarized by polishing until the top of the gate electrode is exposed. Etch back the gate electrode below the level of the upper surface of the first planarizing film. Then deposit a blanket layer of a second planarizing film and polish to planarize it to a level exposing the first planarizing film, forming the second planarizing film into an implantation block covering the top surface of the gate. Remove the first planarizing film. Form the counterdoped regions by implanting dopant into the substrate using the implantation block to block implantation of the dopant into the gate electrode. The implantation block protects the gate electrode of the FET from unwanted implanted impurities during implanting of the counterdoped regions. The first planarizing film is composed of a material selected from the group consisting of HDP (high density plasma) silicon oxide and HDP silicon nitride, an interlevel-dielectric layer material including ONO, and photoresist. The gate electrode is composed of a material selected from the group consisting of polysilicon and metal. The second planarizing film comprises a material such as HDP oxide, HDP nitride, and an organic layer including ARCs. The second planarizing film comprises a different material from the first planarizing film.
摘要:
A double-gate transistor having front (upper) and back gates that are aligned laterally is provided. The double-gate transistor includes a back gate thermal oxide layer below a device layer; a back gate electrode below a back gate thermal oxide layer; a front gate thermal oxide above the device layer; a front gate electrode layer above the front gate thermal oxide and vertically aligned with the back gate electrode; and a transistor body disposed above the back gate thermal oxide layer, symmetric with the first gate. The back gate electrode has a layer of oxide formed below the transistor body and on either side of a central portion of the back gate electrode, thereby positioning the back gate self-aligned with the front gate. The transistor also includes source and drain electrodes on opposite sides of said transistor body.
摘要:
The present invention provides a method for fabricating a planar DGFET having a back gate that is aligned to a front gate. The method of the present invention achieves this alignment by creating a carrier-depleted zone in portions of the back gate. The carrier-depleted zone reduces the capacitance between the source/drain regions and the back gate thereby providing a high-performance self-aligned planar double-gate field effect transistor (DGFET). The present invention also provides a planar DGFET having a back gate that is aligned with the front gate. The front to back gate alignment is achieved by providing a carrier-depleted zone in portions of the back gate.
摘要:
The inventive method for forming thin channel MOSFETS comprises: providing a structure including at least a substrate having a layer of semiconducting material atop an insulating layer and a gate region formed atop the layer of semiconducting material; forming a conformal oxide film atop the structure; implanting the conformal oxide film; forming a set of spacers atop the conformal oxide film, said set of sidewall spacers are adjacent to the gate region; removing portions of the oxide film, not protected by the set of spacers to expose a region of the semiconducting material; forming raised source/drain regions on the exposed region of the semiconducting material; implanting the raised source/drain regions with a second dopant impurity to form a second dopant impurity region; and annealing a final structure to provide a thin channel MOSFET.
摘要:
A method of fabricating a semiconductor structure where a low gate resistance is obtained, while simultaneously reducing silicon consumption in the source/drain diffusion regions. The method provides a semiconductor structure having a thin silicide region formed atop source/drain regions and a thicker silicide region formed atop gate regions. The method includes: first forming a structure which includes self-aligned silicide regions atop the source/drain diffusion regions and the gate region. A non-reactive film and a planarizing film are then applied to the structure containing the self-aligned silicide regions and thereafter a thicker silicide region, as compared to the self-aligned silicide region located atop the source/drain regions, is formed on the gate region.
摘要:
A method and structure for improving the gate activation of metal oxide semiconductor field effect transistor (MOSFET) structures are provided. The method of the present invention includes the steps of forming a structure having a plurality of patterned gate stacks atop a layer of gate dielectric material; forming a non-conformal film on the structure including the plurality of patterned gate stacks; blocking some of the plurality of patterned gate stacks with a first resist, while leaving other patterned gate stacks of said plurality unblocked; implanting first ions into the unblocked patterned gate stacks; removing the first resist and blocking the previously unblocked patterned gate stacks with a second resist; implanting second ions into the patterned gate stacks that are not blocked by the second resist; and removing the second resist and the non-conformal film. The inventive structure contains a non-conformal film formed on both horizontal and vertical surfaces of a structure including at least non-predoped patterned gate regions.
摘要:
A method for improving the gate activation of metal oxide semiconductor field effect transistor (MOSFET) structures are provided. The method of the present invention includes the steps of forming a plurality of patterned gate stacks atop a layer of gate dielectric material; forming a first planarizing organic film on the gate dielectric material and abutting vertical sidewalls of the patterned gate stacks, said planarizing organic film not being present on top, horizontal surfaces of each of the patterned gate stacks; blocking some of the plurality of patterned gate stacks with a first resist, while leaving other patterned gate stacks of said plurality unblocked; implanting first ions into the unblocked patterned gate stacks; removing the first resist and first planarizing organic film and forming a second planarizing organic film and blocking the previously unblocked patterned gate stacks with a second resist; implanting second ions into the patterned gate stacks that are not blocked by said second resist; and removing the second resist and the second planarizing organic film.
摘要:
Disclosed is a method of protecting semiconductor areas while exposing a structures for processing on a semiconductor surface, the method comprising depositing a planarizing high density plasma film of a silicon compound, selected from the group silicon oxide and silicon nitride, depositing a planarized polymer film to a thickness effective in protecting said high density plasma film while leaving high density plasma excess exposed, and etching away said high density plasma excess.
摘要:
A semiconductor device structure includes at least two field effect transistors formed on same substrate, the first field effect transistor includes a spacer having a first width, the second field effect transistor includes a compressive spacer having a second width, the first width being different than said second width. Preferably, the first width is narrower than the second width. A tensile stress dielectric film forms a barrier etch stop layer over the transistors.