摘要:
A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.
摘要:
An electrical structure. The electrical structure includes a resistor having a length L and an electrical resistance R(t) at a time t; and a laser radiation directed onto a portion of the resistor, wherein the portion of the resistor includes a fraction F of the length L, wherein the laser radiation heats the portion of the resistor such that the electrical resistance R(t) instantaneously changes at a rate dR/dt, and wherein the resistor is coupled to a semiconductor substrate.
摘要:
A structure for resistors and the method for tuning the same. The resistor comprises an electrically conducting region coupled to a liner region. Both the electrically conducting region and the liner region are electrically coupled to first and second contact regions. A voltage difference is applied between the first and second contact regions. As a result, a current flows between the first and second contact regions in the electrically conducting region. The voltage difference and the materials of the electrically conducting region and the liner region are such that electromigration occurs only in the electrically conducting region. As a result, a void region within the electrically conducting region expands in the direction of the flow of the charged particles constituting the current. Because the resistor loses a conducting portion of the electrically conducting region to the void region, the resistance of the resistor is increased (i.e., tuned).
摘要:
Passive components are formed in the back end by using the same deposition process and materials as in the rest of the back end. Resistors are formed by connecting in series individual structures on the nth, (n+1)th, etc levels of the back end. Capacitors are formed by constructing a set of vertical capacitor plates from a plurality of levels in the back end, the plates being formed by connecting electrodes on two or more levels of the back end by vertical connection members.
摘要:
In order to reduce power dissipation requirements, obtain full potential transistor performance and avoid power dissipation limitations on transistor performance in high density integrated circuits, transistors are operated in a sub-threshold (sub-Vth) or a near sub-Vth voltage regime (generally about 0.2 volts rather than a super-Vth regime of about 1.2 volts or higher) and optimized for such operation, particularly through simplification of the transistor structure, since intrinsic channel resistance is dominant in sub-Vth operating voltage regimes. Such simplifications include an underlap or recess of the source and drain regions from the gate which avoids overlap capacitance to partially recover loss of switching speed otherwise caused by low voltage operation, an ultra-thin gate structure having a thickness of 500 Å or less which also simplifies forming connections to the transistor and an avoidance of silicidation or alloy formation in the source, drain and/or gate of transistors.
摘要:
Method of fabricating a MIM capacitor and MIM capacitor. The method includes providing a substrate including a dielectric layer formed on a first conductive layer and a second conductive layer formed over the dielectric layer, and patterning a mask on the second conductive layer. Exposed portions of the second conductive layer are removed to form an upper plate of a MIM capacitor having edges substantially aligned with respective edges of the mask. The upper plate is undercut so that edges of the upper plate are located under the mask. Exposed portions of the dielectric layer and the first conductive layer are removed using the mask to form a capacitor dielectric layer and a lower plate of the MIM capacitor having edges substantially aligned with respective edges of the mask.
摘要:
Methods are disclosed for metal encapsulation for preventing exposure of metal during semiconductor processing. In one embodiment, the method includes forming an opening in a structure exposing a metal surface in a bottom of the opening, where the opening forming step occurs in a tool including at least one clustered chamber. An at least partially sacrificial encapsulation layer is then formed on the exposed metal surface in the tool to prevent reaction of the exposed metal surface with the ambient. Exposure of the metal is thereby prevented.
摘要:
A method of forming a semiconductor device, and the device so formed. Depositing a low dielectric constant material on a substrate. Depositing a hard mask on the low dielectric constant material. Forming an at least one first feature within the low dielectric constant material and the hard mask. Depositing a conformal liner over the hard mask and within the at least one feature, wherein the liner occupies more than at least 2% of a volume of the at least one feature, and wherein a thickness of the liner is at least approximately ⅓ a minimum width of the at least one feature. Metallizing the at least one feature.
摘要:
A method of forming a semiconductor device. Depositing alternating layers of a first and a second dielectric material, wherein the first and second dielectric materials are selectively etchable at different rates. Forming a first feature within the alternating layers of dielectric material. Selectively etching the alternating layers of dielectric material to remove at least a portion of the first dielectric material in each layer having the first dielectric material and leaving the second dielectric material as essentially unetched.
摘要:
A circuit having a precision passive circuit element, such as a resistor or a capacitor, with a target value of an electrical parameter is fabricated on a substrate with a plurality of independent parallel-connected passive circuit elements. The plurality of passive circuit elements are designed to have a plurality of values of the electrical parameter which are spaced or offset at or around the target value of the electrical parameter, such as three circuit elements with one having a value at the target value, one having a value above the target value, and one having a value below the target value. Each passive circuit element also has a fuse in series therewith. A reference calibration structure is also fabricated, which can be a passive circuit element having the target value of the electrical parameter, in a reference area of the substrate under the same conditions and at the same time as fabrication of the plurality of passive circuit elements. The actual component value of the reference calibration structure is then measured, and based upon the measurement a single precision passive element of the plurality of parallel passive circuit elements is selected by blowing the fuses of, and thus deselecting, the other independent parallel connected passive circuit elements.