Abstract:
A fuel and gas mixing structure for an engine is provided. This mixing structure includes a body configured to be positioned between a fuel injector and a cylinder of an engine. The body defines an interior volume that is configured to receive gas from outside the body and to receive one or more streams of fuel from the fuel injector in the interior volume. The body also defines one or more mixture conduits configured to conduct plumes of the fuel and gas, while mixing, from the interior volume to one or more exit ports and therethrough to the cylinder.
Abstract:
A method for use with an internal combustion engine having both donor and non-donor cylinder groups includes: injecting a fuel in one, or both, of the groups; injecting a second fuel in both groups at a first substitution rate; recirculating an exhaust emission from the donor cylinder group to both groups; combusting a mixture of air, the first fuel, the second fuel and the exhaust emission in both cylinder groups; and lowering the substitution rate of the second fuel in one, or both, of the cylinder groups. Other methods of controlling an engine and a system are also disclosed.
Abstract:
A reciprocating engine system includes a cylinder, a piston disposed within the cylinder, a knock sensor disposed proximate to the cylinder and configured to detect vibrations of the cylinder, piston, or both, a crankshaft sensor configured to sense a crank angle of a crankshaft, and a controller communicatively coupled to the knock sensor and the crankshaft sensor. The controller is configured to receive a raw knock signal from the knock sensor and a crank angle signal from the crankshaft sensor corresponding to vibrations of the cylinder, piston, or both relative to the crank angle of the crankshaft, convert the raw knock signal into a digital value signal, and at least one of a crank angle for a start of combustion, a peak firing pressure, a percentage of fuel mass fraction burn, or a combination thereof, based on the digital value signal and the crank angle.
Abstract:
A method includes receiving a plurality of signals from a plurality of sensors coupled to a dual fuel engine. The method further includes altering an actual speed of the dual fuel engine to obtain a predetermined air-fuel ratio in response to a changed operating condition of the dual fuel engine determined based on the plurality of signals, so as to maintain operation of the dual fuel engine between knock and misfire conditions.
Abstract:
Fuel injector wear compensation methodologies for use with internal combustion engines that alter the injection schedule over the life of the fuel injector(s) by using methods that conduct a primary injection of fuel in the engine (primary fuel event), per an injection schedule within an engine cycle; compare a measured engine parameter(s) to a reference value(s); and then alter the injection schedule applied to the engine, based on the comparing. Another method comprises: during injection events, inject a first fuel in a combustion chamber of the engine; measure an engine parameter(s) of the engine during operation; compare the engine parameter(s) to a reference value(s); add a post injection event of a second fuel during the injection events, based on the comparison. The methods can be applied with single or dual fuels.
Abstract:
A method for optimal fueling of an engine is disclosed. The method includes determining a quantity of exhaust residuals in each cylinder among a plurality of cylinders in the engine. Further, the method includes determining at least one of an intake and exhaust manifolds temperature, at least one of an intake and exhaust manifolds pressure, and a quantity of a first fuel being injected to each cylinder, and calculating a characteristic temperature of each cylinder based on the quantity of exhaust residuals, at least one of the intake and exhaust manifolds temperature and pressure, and the quantity of the first fuel. The method further includes determining a substitution rate of the first fuel for each cylinder based on the characteristic temperature, and controlling at least one of the quantity of the first fuel, and a quantity of a second fuel being injected to each cylinder based on the substitution rate.
Abstract:
A method of controlling an engine includes injecting a first fuel and a second fuel to each of a donor cylinder group and a non-donor cylinder group of the engine. The method also includes injecting a higher fraction of the first fuel into the donor cylinder group in comparison to the first fuel being injected into the non-donor cylinder group. Further, the method includes injecting a lower fraction of the second fuel into the donor cylinder group in comparison to the second fuel being injected into the non-donor cylinder group. Furthermore, the method includes recirculating an exhaust emission from the donor cylinder group to the non-donor cylinder group and the donor cylinder group and combusting a mixture of air, the first fuel, the second fuel and the exhaust emission from the donor cylinder group in both the donor cylinder group and the non-donor cylinder group.
Abstract:
A method involves controlling a fuel injector to inject a first quantity of a fuel into a cylinder from a plurality of cylinders, of an engine and detecting a first value of a parameter associated with the engine. The method further involves controlling the fuel injector to inject a second quantity of the fuel different from the first quantity of the fuel, into the cylinder of the engine and detecting a second value of the parameter associated with the engine. The method also involves comparing the first value with the second value and detecting a hardware anomaly associated with the engine based on the comparison of the first value with the second value.
Abstract:
A control system for an engine includes one or more processors configured to determine when a change in one or more of oxygen or fuel supplied to an engine. The one or more processors also are configured to, responsive to determining the change in oxygen and/or fuel supplied to an engine, direct one or more fuel injectors of the engine to begin injecting fuel into one or more cylinders of the engine during both a first fuel injection and a second fuel injection during each cycle of a multi-stroke engine cycle of the one or more cylinders.
Abstract:
Methods of operating an internal combustion engine that has two exhaust paths, the first path having an aftertreatment system. One method includes: operating the engine at idle; directing the exhaust flow through the first exhaust path; detecting an exhaust temperature below a predetermined temperature and/or operation of the engine at idle; and diverting all, or some, of the exhaust flow through the second exhaust path, based on the detecting. Another method includes detecting an engine condition that is indicative of an oil accumulation above a threshold and diverting the exhaust flow through the second exhaust path, based on detecting this engine condition. An exhaust subsystem that includes a controller that employs these methods is disclosed.